2025届陕西省西安市陕西师大附中数学八上期末综合测试试题含解析_第1页
2025届陕西省西安市陕西师大附中数学八上期末综合测试试题含解析_第2页
2025届陕西省西安市陕西师大附中数学八上期末综合测试试题含解析_第3页
2025届陕西省西安市陕西师大附中数学八上期末综合测试试题含解析_第4页
2025届陕西省西安市陕西师大附中数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省西安市陕西师大附中数学八上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A. B. C. D.2.如图在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,BE与CD相交于点F,BF=2CE,H是BC边的中点,连接DH与BE相交于点G,下列结论中:①∠A=67.5°;②DF=AD;③BE=2BG;④DH⊥BC其中正确的个数是()A.1个 B.2个 C.3个 D.4个3.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-14.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上皆不对5.不等式3≥2x-1的解集在数轴上表示正确的为()A. B. C. D.6.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等其中正确的结论个数是()A.1 B.2 C.3 D.47.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°8.用不等式表示如图的解集,其中正确的是()A. B.x≥2 C. D.x≤29.若关于的方程有正数根,则的取值范围是()A. B. C. D.且10.计算:()A. B. C. D.11.如图,ΔABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75° B.70° C.65° D.60°12.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°二、填空题(每题4分,共24分)13.若实数满足,且恰好是直角三角形的两条边,则该直角三角形的斜边长为_____.14.若分式的值为0,则的值为______.15.因式分解:(a+b)2﹣64=_____.16.若,则的值为_________.17.已知,.当____时,.18.如图,中,是上一点,,,则____.三、解答题(共78分)19.(8分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).20.(8分)如图,是边长为的等边三角形若点以的速度从点向点运动,到点停止运动;同时点以的速度从点向点运动,到点停止运动,(1)试求出运动到多少秒时,为等边三角形;(2)试求出运动到多少秒时,为直角三角形.21.(8分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:DE=DF;(2)若在原有条件基础上再添加AB=AC,你还能得出什么结论.(不用证明)(写2个)22.(10分)先化简,再求值:,其中是满足的整数.23.(10分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.24.(10分)在中,,点,点在上,连接,.(1)如图,若,,,求的度数;(2)若,,直接写出(用的式子表示)25.(12分)如图,平分,交于点,,垂足为,过点作,交于点.求证:点是的中点.26.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的概念判断即可.【详解】解:A、B、D中的图形不是轴对称图形,

C中的图形是轴对称图形,

故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2、C【分析】根据已知条件得到△BCD是等腰直角三角形,由等腰直角三角形的性质得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根据三角形的内角和得到∠A=67.5°;故①正确;根据余角得到性质得到∠DBF=∠ACD,根据全等三角形的性质得到AD=DF,故②正确;根据BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根据全等三角形的性质得到AE=CE=AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC边的中点,得到DH⊥BC,故④正确;推出DH不平行于AC,于是得到BE≠2BG,故③错误.【详解】解:∵∠ABC=45°,CD⊥AB于D,

∴△BCD是等腰直角三角形,

∴BD=CD,

∵BE平分∠ABC,

∴∠ABE=22.5°,

∴∠A=67.5°;故①正确;

∵CD⊥AB于D,BE⊥AC于E,

∴∠DBF+∠A=90°,∠ACD+∠A=90°,

∴∠DBF=∠ACD,

在△BDF与△CDA中,∴△BDF≌△CDA(ASA),

∴AD=DF,故②正确;

∵BE平分∠ABC,且BE⊥AC于E,

∴∠ABE=∠CBE,∠AEB=∠CEB=90°,

∴在△ABE与△CBE中,

∴△ABE≌△CBE(ASA),

∴AE=CE=AC,

∵△BCD是等腰直角三角形,H是BC边的中点,

∴DH⊥BC,故④正确;

∴DH不平行于AC,

∵BH=CH,∴BG≠EG;

∴BE≠2BG,故③错误.

故选:C.【点睛】本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.3、B【分析】根据一次函数的性质依次分析各项即可.【详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【点睛】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.4、C【解析】试题解析:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.5、C【解析】先解出不等式,再根据不等式解集的表示方法即可判断.【详解】解不等式3≥2x-1得x≤2,在数轴上表示为:故选C.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的解法及表示方法.6、C【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:①全等三角形的形状相同、大小相等;①正确,②全等三角形的对应边相等、对应角相等;②正确,③面积相等的两个三角形不一定是全等图形,故③错误,④全等三角形的周长相等,④正确,∴①②④正确,故答案为:C.【点睛】全等三角形的判定及性质,理解并掌握全等三角形的判定及性质是解题的关键.7、D【解析】试题分析:在Rt△ABC和Rt△ADC中,∵BC=DC,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠ACD,∵∠1+∠ACD=90°,∴∠2+∠1=90°,∵∠1=40°,∴∠2=50°,故选B.考点:全等三角形的判定与性质.8、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D.9、A【分析】分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围.【详解】去分母得:2x+6=1x+1k,解得:x=6﹣1k,根据题意得:6﹣1k>0,且6﹣1k≠﹣1,6﹣1k≠﹣k,解得:k<2且k≠1.∴k<2.故选:A.【点睛】本题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、A【分析】先进行二次根式的乘除运算,然后合并即可.【详解】解:原式===故选A.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.11、C【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF的度数.【详解】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°-50°)÷2=65°,∴∠CFE+∠FEC=180°-65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°-115°=65°,故选:C.【点睛】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,解题关键是熟练掌握三角形内角和是180°.12、C【详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.二、填空题(每题4分,共24分)13、或.【分析】利用非负数的性质求出,再分情况求解即可.【详解】,∴,,①当是直角边时,则该直角三角形的斜边,②当是斜边时,则斜边为,故答案为或.【点睛】本题考查非负数的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、1【分析】根据分式的值为0的条件和分式有意义条件得出4-x1=0且x+1≠0,再求出即可.【详解】解:∵分式的值为0,

∴4-x1=0且x+1≠0,

解得:x=1,

故答案为:1.【点睛】本题考查分式的值为零的条件和分式有意义的条件,能根据题意得出4-x1=0且x+1≠0是解题的关键.15、(a+b﹣8)(a+b+8)【分析】直接利用平方差公式分解因式得出答案.【详解】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).故答案为(a+b﹣8)(a+b+8).【点睛】此题主要考查了平方差公式分解因式,正确应用公式是解题关键.16、1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m的值.【详解】解:∵∴∴解得:m=1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.17、【分析】由得到关于x的一元二次方程,求解方程即可得到x的值.【详解】当时,则有:解得故当时,.故答案为:.【点睛】本题主要考查了解一元二次方程,由得到一元二次方程是解决本题的关键.18、40°【分析】设x,根据等腰三角形的性质,三角形的内角和定理得∠DAC=180°-2x,由三角形外角的性质得∠BAD=,结合条件,列出方程,即可求解.【详解】设x,∵,∴∠C=x,∠BAD=∠DBA=,∴∠DAC=180°-2x,∵,∴180°-2x+=120°,解得:x=40°,故答案是:40°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理以及三角形外角的性质定理,掌握上述定理,列出方程,是解题的关键.三、解答题(共78分)19、(1)1;(2)-6x+5y【分析】(1)根据实数的混合运算法则进行计算即可得解;(2)根据整式的混合运算法则进行计算即可得解.【详解】(1)原式==4-3+1-1=1;(2)原式====.【点睛】本题主要考查了实数及整式的混合运算,熟练掌握相关运算法则是解决本题的关键.20、(1)秒;(2)秒或1.5秒【分析】(1)设运动秒时,为等边三角形,根据列出关于t的方程求解即可;(2)设运动秒时,分或者两种情况列方程求解即可.【详解】(1)设运动秒时,为等边三角形∴∴当运动到秒时,为等边三角形.(2)∵为直角三角形.∴可能或者①当运动秒时,∵∴∴∴②当运动秒时,∵∴∴∴.综上所述,运动秒或1.5秒时,为直角三角形【点睛】本题考查了三角形的动点问题,解题的难点在于分类讨论的数学思想的运用,要做到不重不漏的分析问题的存在性.21、(1)见详解;(2)AD⊥BC,∠BAD=∠CAD.【分析】(1)由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质就可以得出△CDF≌△BDE,就可以得出DE=DF;(2)根据等腰三角形三线合一即可写出结论.【详解】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB,在△CDF和△BDE中,,∴△CDF≌△BDE(AAS),∴DE=DF(2)可以得出AD⊥BC,∠BAD=∠CAD.(理由等腰三角形三线合一).【点睛】本题全等三角形的判定及性质、平行线的性质等知识,解答时证明三角形全等是关键.22、;1【分析】根据分式的运算法则进行化简,再代入使分式有意义的值求解.【详解】==把x=1代入原式=1.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.23、小明的速度为80米/分.【解析】试题分析:设出小明和爸爸的速度,利用时间作为等量关系列方式方程解应用题.试题解析:设小明的速度是x米/分,爸爸的速度是2x米/分,由题意得解得x=80,经检验,x=80是方程的根,所以小明的速度是80米/分.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.24、(1)30°;(2)90°-【分析】(1)根据三角形的内角和定理即可求出∠B+∠C,然后根据等边对等角可得∠BAE=∠BEA、∠CAD=∠CDA,从而求出∠BEA+∠CDA,再根据三角形的内角和定理即可求出∠DAE;(2)根据三角形的内角和定理即可求出∠B+∠C,然后根据等边对等角可得∠BAE=∠BEA、∠CAD=∠CDA,从而求出∠BEA+∠CDA,再根据三角形的内角和定理即可求出∠DAE;【详解】解:(1)∵∴∠B+∠C=180°-∠BAC=60°∵,∴∠BAE=∠BEA=(180°-∠B)∠CAD=∠CDA=(180°-∠C)∴∠BEA+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论