版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省武功县八年级数学第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.42.根据下列表述,不能确定具体位置的是()A.教室内的3排4列 B.渠江镇胜利街道15号C.南偏西 D.东经,北纬3.“Iamagoodstudent.”这句话中,字母“a”出现的频率是()A.2 B. C. D.4.如图,在中,,CD是高,BE平分∠ABC交CD于点E,EF∥AC交AB于点F,交BC于点G.在结论:(1);(2);(3);(4)中,一定成立的有()A.1个 B.2个 C.3个 D.4个5.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则下列等式不正确的是()A.AB=AC B.BE=DC C.AD=DE D.∠BAE=∠CAD6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个7.如果分式有意义,则x的取值范围是()A.x>3 B.x≠3 C.x<3 D.x>08.的平方根是()A. B. C. D.9.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.> D.m2>n210.若,则a与4的大小关系是()A.a=4 B.a>4 C.a≤4 D.a≥411.能使成立的x的取值范围是()A.x≠2 B.x≥0 C.x≥2 D.x>212.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°二、填空题(每题4分,共24分)13.已知P(a,b),且ab<0,则点P在第_________象限.14.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.15.如图,已知,请你添加一个条件使__________.16.将用四舍五入法精确到为__________.17.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=3:5,则∠BEC的度数为______.18.一次函数y=kx+b与y=x+2两图象相交于点P(2,4),则关于x,y的二元一次方程组的解为____.三、解答题(共78分)19.(8分)请把下列多项式分解因式:(1)(2)20.(8分)如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.
(1)判断△ABC的形状并说明理由;
(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.
(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.
21.(8分)如图,,是边的中点,于,于.(1)求证:;(2)若,,求的周长.22.(10分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.23.(10分)与是两块全等的含的三角板,按如图①所示拼在一起,与重合.(1)求证:四边形为平行四边形;(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.24.(10分)已知:如图,∠B=∠D,∠1=∠2,AB=AD,求证:BC=DE.25.(12分)如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x+b经过点A且交x轴于点F.(1)求b的值和△AFO的面积;(2)将直线y=2x+b向右平移6单位后交AB于点D,交y轴于点E;①求点D,E的坐标;②动点P在BC边上,点Q是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ是等腰直角三角形,求点Q的坐标.26.如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:△ABD的面积为9,△ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质2、C【分析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【详解】A、教室内的3排4列,可以确定具体位置,不合题意;
B、渠江镇胜利街道15号,可以确定具体位置,不合题意;
C、南偏西30,不能确定具体位置,符合题意;
D、东经108°,北纬53°,可以确定具体位置,不合题意;
故选:C.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.3、B【解析】这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.4、B【分析】根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD;只有△ABC是等腰直角三角形时AD=CD,CG=EG;利用“角角边”证明△BCE和△BFE全等,然后根据全等三角形对应边相等可得BF=BC.【详解】∵EF∥AC,∠BCA=90°,∴∠CGE=∠BCA=90°,∴∠BCD+∠CEG=90°,又∵CD是高,∴∠EFD+∠FED=90°,∵∠CEG=∠FED(对顶角相等),∴∠EFD=∠BCD,故(1)正确;只有∠A=45°,即△ABC是等腰直角三角形时,AD=CD,CG=EG而立,故(2)(3)不一定成立,错误;∵BE平分∠ABC,∴∠EBC=∠EBF,在△BCE和△BFE中,,∴△BCE≌△BFE(AAS),∴BF=BC,故(4)正确,综上所述,正确的有(1)(4)共2个.故选:B.【点睛】本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.5、C【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【详解】∵△ABE≌△ACD,
∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,
故选:C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.7、B【分析】分式有意义的条件是分母不等于零,从而得到x﹣2≠1.【详解】∵分式有意义,∴x﹣2≠1.解得:x≠2.故选:B【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.8、C【解析】∵±3的平方是9,∴9的平方根是±3故选C9、D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.10、D【分析】根据二次根式的性质可得a-4≥0,即可解答.【详解】解:由题意可知:a﹣4≥0,∴a≥4,故答案为D.【点睛】本题考查了二次根式的性质,掌握二次根式的非负性是解答本题的关键.11、D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:,解得:x>1.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.12、B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.二、填空题(每题4分,共24分)13、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.14、(﹣2,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.15、AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一)【分析】根据图形可知证明△ABC≌△ADE已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【详解】解:∵∠A=∠A,AB=AD,
∴添加条件AC=AE,此时满足SAS;
添加条件∠ADE=∠ABC,此时满足ASA;
添加条件∠C=∠E,此时满足AAS,
故答案为:AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一).【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16、8.1【分析】精确到哪位,就是对它后边的一位进行四舍五入,这里对千分位的6进行四舍五入,即可得出答案.【详解】用四舍五入法精确到0.01为8.1.故答案为:8.1.【点睛】本题考查了近似数和有效数字.精确到哪一位,即对下一位的数字进行四舍五入.17、100°或130°.【分析】分两种情形:①如图1中,当高BD在三角形内部时.②如图2中,当高BD在△ABC外时,分别求解即可.【详解】①如图1中,当高BD在三角形内部时,∵CE平分∠ACB,∠ACB=50°,∴∠ACE=∠ECB=25°.∵∠ABD:∠ACF=3:5,∴∠ABD=15°.∵BD⊥AC,∴∠BDC=90°,CBD=40°,∴∠CBE=∠CBD+∠ABD=40°+15°=55°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣25°﹣55°=100°②如图2中,当高BD在△ABC外时,同法可得:∠ABD=25°,∠ABD=15°,∠CBD=40°,∴∠CBE=∠CBD﹣∠ABD=40°﹣15°=25°,∴∠BEC=180°﹣25°﹣25°=130°,综上所述:∠BEC=100°或130°.故答案为:100°或130°.【点睛】本题考查了三角形内角和定理,三角形的外角的性质,三角形的角平分线的定义,三角形的高等知识,解题的关键是世界之外基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.18、.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】∵一次函数y=kx+b与y=x+2两图象相交于点P(2,4),∴关于x,y的二元一次方程组的解为.故答案为:.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题(共78分)19、(1);(2).【分析】(1)利用平方差公式分解即可;
(2)原式提取,再利用完全平方公式分解即可.【详解】(1);(2).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.20、(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析【分析】(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;
(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SAS”可证△AMC≌△BGC,可得CM=CG,根据等腰三角形性质可得CF⊥FG.【详解】解:(1)∵a2+2ab+b2=1,
∴(a+b)2=1,
∴a=-b,
∴OA=OB,且AB⊥OC,
∴OC是AB的垂直平分线,
∴AC=BC,
∴△ACB是等腰三角形(2)PM∥AN,
理由如下:
如图,延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,
∵OC是AB的垂直平分线,
∴AN=NB,CO⊥AB
∴∠NAB=∠NBA,∠ANO=∠BNO
∴∠PNC=∠CNE,且MH⊥AE,MD⊥BP,
∴MD=MH,
∵∠CAM=∠MAN=∠NAB,
∴AM平分∠CAE,且MG⊥AC,MH⊥AE
∴MG=MH
∴MG=MD,且MG⊥AC,MD⊥BP,
∴PM平分∠BPC
∵∠CAM=∠MAN=∠NAB,∠PNA=∠NAB+∠NBA
∴∠CAN=2∠NAB=∠PNA,
∵∠CPB=∠CAN+∠PNA
∴∠CPB=4∠NAB
∵PM平分∠BAC
∴∠CPM=2∠NAB
∴∠CPM=∠CAN
∴PM∥AN
(3)如图,延长GF至点M,使FM=FG,连接CG,CM,AM,
∵MF=FG,∠AFM=∠DFG,AF=DF,
∴△AMF≌△DGF(SAS)
∴AM=DG,∠MAD=∠ADG,
∵DE⊥AB,CO⊥AB
∴DE∥CO
∴∠BCO=∠BDE
∵∠ACB=∠BGE,∠BGE=∠BDE+∠DBG=∠BCO+∠DBG,∠ACB=2∠BCO,
∴∠BCO=∠BDG=∠DBG
∴DG=BG,
∴AM=BG
∵∠CAM=∠MAD-∠CAD=∠ADG-∠CAD=∠ADB-∠BDE-∠CAD=∠ADB-∠OCB-∠CAD=∠OCB
∴∠CAM=∠CBG,且AC=BC,AM=BG
∴△AMC≌△BGC(SAS)
∴CM=CG,且MF=FG
∴CF⊥FG
【点睛】本题是三角形综合题,考查了线段垂直平分线的性质,角平分线的性质,等腰三角形的性质,全等三角形的判定和性质等知识,添加恰当的辅助线构造全等三角形是本题的关键,属于中考压轴题.21、(1)详见解析;(2)1.【分析】(1)先利用等腰三角形等边对等角得出∠B=∠C,再利用AAS证明△BDE≌△CDF,即可得出结论;(2)先证明△ABC是等边三角形,然后根据含30°的直角三角形的性质求出等边三角形的边长,则周长可求.【详解】(1)证明:∵AB=AC∴∠B=∠C,∵DE⊥AB于E,DF⊥AC于F,∴∠BED=∠CFD=90°,∵D是BC边的中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS)∴BE=CF;(2)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∵∠BED=∠CFD=90°,∴∠BDE=∠CDF=30°,∴BD=2BE=2=CD,∴BC=4,∴△ABC周长=4×3=1.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形的判定及等边三角形的判定方法是解题的关键.22、见解析【分析】(1)根据∠ACB=90°,证∠CAD=∠BCF,再利用BF∥AC,证∠ACB=∠CBF=90°,然后利用ASA即可证明△ACD≌△CBF.(2)先根据ASA判定△ACD≌△CBF得到BF=BD,再根据角度之间的数量关系求出∠ABC=∠ABF,即BA是∠FBD的平分线,从而利用等腰三角形三线合一的性质求证即可.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵CE⊥AD,∴∠CAD=∠BCF,∵BF∥AC,∴∠FBA=∠CAB=45°∴∠ACB=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF;(2)证明:∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,在△ACD与△CBF中,∵,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.23、(1)证明见解析;(2)OP=OQ,证明见解析;(3)90°,理由见解析.【分析】(1)已知△ABC≌△FCB,根据全等三角形的性质可知AB=CF,AC=BF,根据两组对边分别相等的四边形是平行四边形即可得到结论.(2)根据已知利用AAS判定△COQ≌△BOP,根据全等三角形的性质即可得到OP=OQ.(3)根据对角线互相垂直的平行四边形的菱形进行分析即可.【详解】(1)证明:∵△ABC≌△FCB,∴AB=CF,AC=BF.∴四边形ABFC为平行四边形.(2)解:OP=OQ,理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,∴△COQ≌△BOP.∴OQ=OP.(3)解:90°.理由:∵OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥PQ,∴四边形PCQB为菱形.【点睛】此题考查学生对平行四边形的判定及性质,全等三角形的判定,菱形的判定等知识的综合运用.24、见解析【分析】先利用ASA证明△ABC≌△ADE,再根据全等三角形的性质即得结论.【详解】证明:∵∠1=∠2,∴∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.25、(1)b=6,S△ADO=×3×6=;(2)①D(6,6),E(0,-6);②点Q的坐标可以为(,),(4,2),(,).【分析】(1)由矩形的性质和点B坐标求得A坐标,代入直线方程中即可求得b值,进而求得点F坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D、E的坐标;②根据题意,分三种情况:若点A为直角顶点时,点Q在第一象限;若点P为直角顶点时,点Q在第一象限;若点Q为直角顶点,点Q在第一象限,画出对应的图象分别讨论求解即可.【详解】(1)由题意得A(0,6),代入y=2x+b中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S△ADO=×3×6=;
(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广告代理与广告客户合同
- 2024年国际光纤网络建设合同
- 2024年个体工商户与雇工弹性工作合同
- 2024正式的服装代理合同书
- 2024年家政服务雇佣协议
- 2024年合同条款革新:构建新范式
- 2024年企业咨询服务及管理培训合同
- 2024年城市垃圾处理与环保合同
- 2024年国际版权许可使用合同(文学作品)
- 2024宾馆装修合同样式
- 城乡供水一体化
- 新进员工安全培训内容
- 巴林特工作小组培训
- 部编人教版初中语文教科书九年级设计思路及教学建议课件
- (人教版)七年级道德与法治上册交互课件-【3.7.3 让家更美好】
- 厂房监控设备安装施工方案
- 安全生产奖惩制度范文(五篇)
- 朱昌窖酒研发基地项目环境影响报告
- 退化林修复投标方案(技术标)
- 重症医学科三年发展规划
- 气液两相流-第3章-流型课件
评论
0/150
提交评论