2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题含解析_第1页
2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题含解析_第2页
2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题含解析_第3页
2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题含解析_第4页
2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省泉州市港泉区数学八年级第一学期期末质量检测模拟试题模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,222.已知,,且,则的值为()A.2或12 B.2或 C.或12 D.或3.下列各式中,是分式的有(),,,﹣,,,.A.5个 B.4个 C.3个 D.2个4.在,,,,中,分式的个数是()A.1 B.2 C.3 D.45.计算:的结果是()A. B. C. D.6.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间7.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6C.2m+3 D.2m+68.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD9.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD;②CN=CM;③MN∥AB;④∠CDB=∠NBE.其中正确结论的个数是()A.4 B.3 C.2 D.110.在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在下列这些示意图标中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点F是△ABC的边BC延长线上一点,DF⊥AB于点D,∠A=30°,∠F=40°,∠ACF的度数是_____.12.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.13.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.14.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________15.如图,在等腰三角形中,,为边上中点,多点作,交于,交于,若,,则的面积为______.16.在△ABC中,已知AB=15,AC=11,则BC边上的中线AD的取值范围是____.17.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造________根.18.数据-3、-1、0、4、5的方差是_________.三、解答题(共66分)19.(10分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.20.(6分)某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.21.(6分)如图,傅家堰中学新修了一个运动场,运动场的两端为半圆形,中间区域为足球场,外面铺设有塑胶环形跑道,四条跑道的宽均为1米.(1)用含a、b的代数式表示塑胶环形跑道的总面积;(2)若a=60米,b=20米,每铺1平方米塑胶需120元,求四条跑道铺设塑胶共花费多少元?(π=3)22.(8分)先化简,再求值并从中选取合适的整数代入求值.23.(8分)先化简,再求值:,其中x=1.24.(8分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.25.(10分)某农场急需氨肥8t,在该农场南北方向分别有A,B两家化肥公司,A公司有氨肥3t,每吨售价750元;B公司有氨肥7t,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输质量a(单位:t)的关系如图所示.(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.26.(10分)已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=38º,求∠DCB的度数;(2)若AB=5,CD=3,求△BCD的面积.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.

故选A.【点睛】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.2、D【详解】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.3、B【解析】是多项式,是整式;是分式;是整式;是分式;是分式;,是整式;是分式,所以分式共有4个,故选B.4、C【解析】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.5、C【分析】根据积的乘方的运算法则和单项式乘除法的运算法则计算即可.【详解】故选:C.【点睛】本题主要考查积的乘方和单项式的乘除法,掌握积的乘方的运算法则和单项式乘除法的运算法则是解题的关键.6、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.7、C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.8、C【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;∴BE=CE,故选项B正确;在△ABD和△ACD中,∵,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键.9、A【分析】根据题目中的已知信息,判定出△ACE≌△DCB,即可证明①正确;判定△ACM≌△DCN,即可证明②正确;证明∠NMC=∠ACD,即可证明③正确;分别判断在△DCN和△BNE各个角度之间之间的关系,即可证明④正确.【详解】∵△ACD和△BCE是等边三角形∴∠ACD=∠BCE=60°,AC=DC,EC=BC∴∠ACD+∠DCE=∠DCE+∠ECB即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=BD,故①正确;∴∠EAC=∠NDC∵∠ACD=∠BCE=60°∴∠DCE=60°∴∠ACD=∠MCN=60°∵AC=DC∴△ACM≌△DCN(ASA)∴CM=CN,故②正确;又∠MCN=180°-∠MCA-∠NCB=180°-60°-60°=60°∴△CMN是等边三角形∴∠NMC=∠ACD=60°∴MN∥AB,故③正确;在△DCN和△BNE,∠DNC+∠DCN+∠CDB=180°∠ENB+∠CEB+∠NBE=180°∵∠DNC=∠ENB,∠DCN=∠CEB∴∠CDB=∠NBE,故④正确.故选:A.【点睛】本题主要考查了根据已知条件判定三角形全等以及三角形的内角和,其中灵活运用等边三角形的性质是解题的关键,属于中等题.10、B【分析】根据轴对称图形的定义即可解答.【详解】根据轴对称图形的定义可知:选项A不是轴对称图形;选项B是轴对称图形;选项C不是轴对称图形;选项D不是轴对称图形.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、80°【分析】根据三角形的内角和可得∠AED=60°,再根据对顶角相等可得∠AED=∠CEF=60°,再利用三角形的内角和定理即可求解.【详解】解:∵DF⊥AB,∴∠ADE=90°,∵∠A=30°,∴∠AED=∠CEF=90°﹣30°=60°,∴∠ACF=180°﹣∠F﹣∠CEF=180°﹣40°﹣60°=80°,故答案为:80°.【点睛】本题考查三角形的内角和定理、对顶角相等,灵活运用三角形的内角和定理是解题的关键.12、135°【分析】根据正多边形的内角和公式计算即可.【详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【点睛】本题考查了正多边形的内角和,掌握知识点是解题关键.13、-1或7【详解】∵x+2(m-3)x+16是一个完全平方式,∴,∴m=-1或7.故答案是:-1或714、120°或75°或30°【解析】∵∠AOB=60°,OC平分∠AOB,点E在射线OA上,∴∠COE=30°.如下图,当△OCE是等腰三角形时,存在以下三种情况:(1)当OE=CE时,∠OCE=∠COE=30°,此时∠OEC=180°-30°-30°=120°;(2)当OC=OE时,∠OEC=∠OCE==75°;(3)当CO=CE时,∠OEC=∠COE=30°.综上所述,当△OCE是等腰三角形时,∠OEC的度数为:120°或75°或30°.点睛:在本题中,由于题中没有指明等腰△OCE的腰和底边,因此要分:(1)OE=CE;(2)OC=OE;(3)CO=CE;三种情况分别讨论,解题时不能忽略了其中任何一种情况.15、【分析】利用等腰直角三角形斜边中点D证明AD=BD,∠DBC=∠A=45,再利用证得∠ADE=∠BDF,由此证明△ADE≌△BDF,得到BC的长度,即可求出三角形的面积.【详解】∵,AB=BC,∴∠A=45,∵为边上中点,∴AD=CD=BD,∠DBC=∠A=45,∠ADB=90,∵,∴∠EDB+∠BDF=∠EDB+∠ADE=90,∴∠ADE=∠BDF,∴△ADE≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴的面积为=,故答案为:.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.16、2<AD<1【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<1;故答案为:2<AD<1.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.17、1【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,然后根据三角形的内角和定理求解即可.【详解】解:解:∵添加的钢管长度都与CD相等,∠MAN=11°,

∴∠DBC=∠BDC=30°,

从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是11°,第二个是30°,第三个是41°,第四个是60°,第五个是71°,第六个是90°就不存在了.

所以一共有1个.

故答案为1.【点睛】本题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.18、9.1.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:方差是.故答案为:9.1.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可.三、解答题(共66分)19、(1)见解析;(2),见解析【分析】(1)以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,证明△AEB≌△MEF,根据全等三角形的性质证明;

(2)在直线m上截取AN=AB,连接NE,证明△NAE≌△ABE,根据全等三角形的性质得到EN=EB,∠ANE=∠ABE,证明EN=EF,等量代换即可.【详解】(1)如图1,以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,∴,∵,∴,∵,∴,,∴,∴,∵,∴,∵,∴,∴,∴;(2).理由如下:如图2,在直线上截取,连接,∵,AB=BC,∴,∵,∴,,∵,∴,∴,,∵,,∴,∴,∴.【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的判定和性质、平行线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.20、见解析【分析】先根据勾股定理求出AC的长,然后在△ACD中,由勾股定理的逆定理,即可证明△ACD为直角三角形.【详解】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.【点睛】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出AC的长是解题的关键.21、(1)4πb+16π+8a;(2)四条跑道铺设塑胶共花费92160元.【分析】(1)塑胶环形跑道的总面积可以看成是半径为()的圆的面积-半径为的圆的面积+8个长为a宽为1的矩形面积,据此解答即可;(2)先把a、b和π的值代入(1)题的式子,可得需铺设的总面积,所得结果再乘以120即得结果.【详解】解:(1)塑胶环形跑道的总面积=π()2-π()2+2×4a=π(+16)-+8a=+4πb+16π-+8a=4πb+16π+8a;(2)当a=60,b=20,π=3时,原式=4×3×20+16×3+8×60=768,768×120=92160(元).答:四条跑道铺设塑胶共花费92160元.【点睛】本题考查了列代数式、完全平方公式和代数式求值,属于常见题型,正确读懂题意、熟练掌握基本知识是解题关键.22、,.【分析】将原式化简成,由已知条件为中的整数,原式有意义可知,从而得出或,将其代入中即可求出结论.【详解】∵且为整数,且,,.∴取,原式.或取,原式【点睛】分式的化简考查了分式的运算,主要涉及分式的加减法、分式的乘除法,分式的加减法关键是化异分母为同分母,分式的除法关键是将除法转化为乘以除式的倒数;求值部分,尤其是这类选取适当的数代入求值时,千万要注意未知数取值的限制,所有使分母等于零的数都不能取,使使除号后紧跟的分式的分子为零的数也不能取避免进入分式无意义的雷区,例如本题已知条件中选取的合适的整数只有1和1.23、,.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】解:===,当x=1时,原式===.【点睛】本题考查分式方程的化简求值,关键在于熟练掌握运算方法.24、(1)yI=40x+3200(x≥20);yII=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案I购买合算【分析】(1)根据两种方案的购买方法即可列式计算得到答案;(2)先计算yI=yII时的x值,再分析超过1条时和20条以上不超过1条时的购买方案.【详解】解:(1)yI=200×20+(x﹣20)×40=40x+3200(x≥20)yII=200×20×90%+x×40×90%=36x+3600(x≥20).(2)当yI=yII时,40x+3200=36x+3600,解得x=1.即:买1条领带时,可采用两种方案之一.当yI>yII时,40x+3200>36x+3600,解得x>1,即购买领带超过1条时,采用方案II合算.当yI<yII时,40x+3200<36x+3600,解得x<1,即购买领带20条以上不超过1条时,采用方案I购买合算.【点睛】此题考查运用一次函数解决实际问题,正确理解题意列得函数关系式是解题的关键,(2)是方案选择问题,注意分类思想.25、(1)b=;(2)当m>时,到A公司买3t,到B公司买

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论