2025届福建省南平三中学数学八上期末统考试题含解析_第1页
2025届福建省南平三中学数学八上期末统考试题含解析_第2页
2025届福建省南平三中学数学八上期末统考试题含解析_第3页
2025届福建省南平三中学数学八上期末统考试题含解析_第4页
2025届福建省南平三中学数学八上期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省南平三中学数学八上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各点中位于第四象限的点是()A. B. C. D.2.两条直线与在同一直角坐标系中的图象位置可能为().A. B. C. D.3.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.4.某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则;②若这5次成绩的中位数为8,则;③若这5次成绩的众数为8,则;④若这5次成绩的方差为8,则A.1个 B.2个 C.3个 D.4个5.下列运算正确的是()A.(3a2)3=27a6 B.(a3)2=a5C.a3•a4=a12 D.a6÷a3=a26.一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最大值是()A. B. C. D.7.已知△ABC中,AB=8,BC=5,那么边AC的长可能是下列哪个数()A.15 B.12 C.3 D.28.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.9.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10-6米 B.3.4×10-6米 C.34×10-5米 D.3.4×10-5米10.点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,﹣1)二、填空题(每小题3分,共24分)11.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.12.已知,则的值是__________.13.如图(1),在三角形ABC中,,BC边绕点C按逆时针方向旋转,在旋转过程中(图2),当时,旋转角为__________度;当所在直线垂直于AB时,旋转角为___________度.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a+b=___.15.如图,在中,是上的一点,,点是的中点,交于点,.若的面积为18,给出下列命题:①的面积为16;②的面积和四边形的面积相等;③点是的中点;④四边形的面积为;其中,正确的结论有_____________.16.计算:__________.17.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.18.已知一次函数y=kx﹣4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.三、解答题(共66分)19.(10分)下面是小东设计的“作△ABC中BC边上的高线”的尺规作图过程.已知:△ABC.求作:△ABC中BC边上的高线AD.作法:如图,①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E;②连接AE交BC于点D.所以线段AD是△ABC中BC边上的高线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵=BA,=CA,∴点B,C分别在线段AE的垂直平分线上()(填推理的依据).∴BC垂直平分线段AE.∴线段AD是△ABC中BC边上的高线.20.(6分)张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为千米和千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行米,求张康和李健的速度分别是多少米分?(2)两人到达绿道后约定先跑千米再休息,李健的跑步速度是张康跑步速度的倍,两人在同起点,同时出发,结果李健先到目的地分钟.①当,时,求李健跑了多少分钟?②求张康的跑步速度多少米分?(直接用含,的式子表示)21.(6分)如图,ACB和ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:AE=DB;(2)若AD=2,DB=3,求ED的长.22.(8分)为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)租车公司目前B型车只有6辆,若A型车租金为1800元/辆,B型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.23.(8分)一次函数的图像经过、两点.(1)求直线AB的函数表达式;(2)与直线AB交于点C,求点C的坐标.24.(8分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?25.(10分)已知一次函数的图象经过点(2,1)和(0,﹣2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(﹣4,6)是否在该函数图象上.26.(10分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.(1)用含a的代数式表示第一批茶叶的毛利润;(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据各象限内点的坐标的符号特征,进行分析即可.【详解】A.位于第三象限,不符合题意;B.位于第一象限,不符合题意;C.位于第四象限,符合题意;D.位于第一象限,不符合题意.故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2、B【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【详解】解:分四种情况讨论:当a>0,b>0时,直线与的图象均经过一、二、三象限,4个选项均不符合;当a>0,b<0,直线图象经过一、三、四象限,的图象经过第一、二、四象限;选项B符合此条件;当a<0,b>0,直线图象经过一、二、四象限,的图象经过第一、三、四象限,4个选项均不符合;当a<0,b<0,直线图象经过二、三、四象限,的图象经过第二、三、四象限,4个选项均不符合;故选:B.【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则,故正确;②若这5次成绩的中位数为8,则可以任意数,故错误;③若这5次成绩的众数为8,则只要不等于7或9即可,故错误;④若时,方差为,故错误.所以正确的只有1个故选:A.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.5、A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵(3a2)3=27a6,∴选项A符合题意;∵(a3)2=a6,∴选项B不符合题意;∵a3•a4=a7,∴选项C不符合题意;∵a6÷a3=a3,∴选项D不符合题意.故选:A.【点睛】本题考查的知识点是同底数幂的乘除法的运算法则以及幂的乘方,积的乘方的运算法则,熟练掌握以上知识点的运算法则是解此题的关键.6、C【分析】根据三角形的三边关系求出第三边长的取值范围,再结合已知条件求出第三边长的最大整数值,即可求出三角形的周长最大值.【详解】解:∵一个三角形的两边长分别为和∴5-2<第三边长<5+2解得:3<第三边长<7∵第三边长为整数,∴第三边长可以为4、5、6∴第三边长的最大值为6∴三角形的周长最大值为2+5+6=13故选C.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围和求三角形的周长,掌握三角形的三边关系和三角形的周长公式是解决此题的关键.7、B【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【详解】解:根据三角形的三边关系,8−5<AC<8+5,即3<AC<13,符合条件的只有12,故选:B.【点睛】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.9、B【解析】试题解析:0.0000034米米.故选B.10、C【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(每小题3分,共24分)11、87.5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=(分).故答案为:87.5分.【点睛】本题考查了加权平均数的求法.熟记公式:是解决本题的关键.12、7【分析】已知等式两边平方,利用完全平方公式展开,变形即可求出所求式子的值.【详解】将两边平方得:,即:,解得:=7,故填7.【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.13、701【分析】在三角形ABC中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC中,∠A=38°,∠C=72°,

∴∠B=180°-38°-72°=70°,

如图1,当CB′∥AB时,旋转角=∠B=70°,∴当CB′∥AB时,旋转角为70°;

如图2,当CB′⊥AB时,∠BCB″=90°-70°=20°,

∴旋转角=180°-20°=1°,

∴当CB′⊥AB时,旋转角为1°;

故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.14、-2【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数,得出a、b的值即可得答案.【详解】解:由题意,得

a+3=-2,b-1=-1.

解得a=-5,b=-3,所以a+b=(-5)+(-3)=-2

故答案为:-2.【点睛】本题考查关于x轴对称的点的坐标,熟记对称特征:关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题关键.15、③④【分析】①根据等高的三角形面积比等于底边比即可求解;②先分别得出△ABE的面积与△BCD的面积的关系,然后进一步求解即可;③过点D作DG∥BC,通过三角形中位线性质以及全等三角形的判定和性质进一步求解即可;④根据题意将该四边形面积计算出来即可.据此选出正确的选项从而得出答案.【详解】①∵,∴EB=BC,∴的面积=,故①错误;②∵,点D为AC的中点,∴△ABE的面积≠△BCD的面积,∴的面积和四边形的面积不相等,故②错误;③如图,过点D作DG∥BC,∵D是AC中点,DG∥BC,∴DG=,∵,∴DG=EB,∵DG∥BC,∴∠DGF=∠BEF,∠GDF=∠EBF,在△DGF与△BEF中,∵∠DGF=∠BEF,DG=EB,∠GDF=∠EBF,∴△DGF≌△BEF(ASA),∴DF=BF,∴点是的中点,故③正确;④四边形的面积=,故④正确;综上所述,正确的结论有:③④,故答案为:③④.【点睛】本题主要考查了三角形的基本性质与全等三角形的判定及性质的综合运用,熟练掌握相关概念是解题关键.16、.【详解】解:===a-1故答案为:a-1.17、1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴×10×CE=30,∴CE=1.即CM+MN的最小值为1.故答案为1.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.18、y=﹣x﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k值,即可.【详解】令x=0,则y=0﹣1=﹣1,令y=0,则kx﹣1=0,x=,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(,0),∴OA=1,OB=-,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【点睛】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.三、解答题(共66分)19、(1)作图见解析;(2)AB;EC;到线段两个端点距离相等的点在线段的垂直平分线上.【分析】(1)根据要求画出图形即可;(2)根据线段的垂直平分线的判定即可解决问题.【详解】(1)图形如图所示:(2)理由:连接BE,EC.∵AB=BE,EC=CA,∴点B,点C分别在线段AE的垂直平分线上(到线段两个端点距离相等的点在线段的垂直平分线上),∴直线BC垂直平分线段AE,∴线段AD是△ABC中BC边上的高线.故答案为BE,EC,到线段两个端点距离相等的点在线段的垂直平分线上.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握基本知识.20、(1)李康的速度为米分,张健的速度为米分.(2)①李健跑了分钟,②【分析】(1)设李康的速度为米分,则张健的速度为米分,根据两人所用的时间相等列出方程求解即可得出答案;(2)①李健跑的时间=,将,代入计算即可得解;②先用含有a,b的代数式表示出张康的跑步时间,再用路程除以时间即可得到他的速度.【详解】(1)设李康的速度为米分,则张健的速度为米分,根据题意得:解得:,经检验,是原方程的根,且符合题意,.答:李康的速度为米分,张健的速度为米分.(2)①,,(分钟).故李健跑了分钟;②李健跑了的时间:分钟,张康跑了的时间:分钟,张康的跑步速度为:米分.【点睛】本题主要考查了分式方程的应用,行程问题里通常的等量关系是列出表示时间的代数式,然后根据时间相等或多少的关系列出方程并求解,要注意两个层面上的检验.21、(1)见解析;(2)【分析】(1)根据两边及夹角对应相等的两个三角形全等即可得证;(2)只要证明∠EAD=90°,AE=BD=3,AD=2,根据勾股定理即可计算.【详解】(1)证明:∵ACB和ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵,∴,即.在ACE和BCD中,,∴≌,∴.(2)解∵是等腰直角三角形,∴.∵≌,∴,∴,∴.∵,∴.∵,,∴.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,发现∠EAD=90°是解题的突破口.22、(1)每辆A型车有45个座位,每辆B型车有60个座位;(2)租4辆A型车、4辆B型车所需租金最少【分析】(1)设每辆A型车有x个座位,每辆B型车有y个座位,根据“若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租m辆A型车,n辆B型车,根据所租车辆的座位恰好坐满,即可得出关于m,n的二元一次方程,结合m,n为非负整数且n≤6,即可得出各租车方案,再求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设每辆型车有个座位,每辆型车有个座位,依题意,得:,解得:.答:每辆型车有45个座位,每辆型车有60个座位.(2)设租辆型车,辆型车,依题意,得:,.,均为非负整数,当时,,,不合题意,舍去;当时,;当时,,共有两种租车方案,方案1:租4辆型车,4辆型车;方案2:租8辆型车,1辆型车.方案1所需费用为(元;方案2所需费用为(元.,组4辆型车、4辆型车所需租金最少.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.23、(1);(2).【分析】(1)利用待定系数法即可求得;(2)联立两个函数,它们的交点的x和y值对应的就是C点的横、纵坐标.【详解】解:(1)将、分别代入得,,解得,即;(2)联立,解得,故C点的坐标为:.【点睛】本题考查求一次函数解析式,一次函数与二元一次方程组.理解一次函数交点与二元一次方程组的解之间的关系是解题关键.24、(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵VP≠VQ,∴BP≠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论