版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西钦州市钦州港经济技术开发区中学八年级数学第一学期期末学业水平测试试题学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若分式有意义,则实数的取值范围是()A. B. C. D.2.下列式子可以用平方差公式计算的是()A. B.C. D.3.分式可变形为()A. B. C. D.4.关于函数的图像,下列结论正确的是()A.必经过点(1,2) B.与x轴交点的坐标为(0,-4)C.过第一、三、四象限 D.可由函数的图像平移得到5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁6.下列运算正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a2•a3=a67.如图,直线,被直线所截,下列条件一定能判定直线的是()A. B. C. D.8.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形 B.等腰直角三角形C.等腰三角形 D.含30°角的直角三角形9.下列二次根式是最简二次根式的()A. B. C. D.10.对于一次函数y=x+1的相关性质,下列描述错误的是()A.y随x的增大而增大; B.函数图象与x轴的交点坐标为(1,0);C.函数图象经过第一、二、三象限; D.函数图象与坐标轴围成的三角形面积为.11.已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=x﹣k的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6 C.(﹣ab2)6=a6b6 D.(a+b)2=a2+b2二、填空题(每题4分,共24分)13.关于的一次函数,其中为常数且.①当时,此函数为正比例函数.②无论取何值,此函数图象必经过.③若函数图象经过,(,为常数),则.④无论取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.14.已知一个角的补角是它余角的3倍,则这个角的度数为_____.15.将长方形纸片沿折叠,得到如图所示的图形,若,则__________度.16.若n边形的内角和是它的外角和的2倍,则n=.17.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m,则的值为______.18.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为__.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(-3,0),B(-3,-3),C(-1,-3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.20.(8分)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽张瑛专业知识1418工作经验1616仪表形象181221.(8分)某中学八年级的同学参加义务劳动,其中有两个班的同学在两处参加劳动,另外两个班级在道路两处劳动(如图),现要在道路的交叉区域内设置一个茶水供应点P,使P到的距离相等,且使,请找出点P的位置(要求尺规作图,不写作法,保留痕迹)22.(10分)(1)解方程:(2)计算:23.(10分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.24.(10分)已知:点C为∠AOB内一点.(1)在OA上求作点D,在OB上求作点E,使△CDE的周长最小,请画出图形;(不写做法,保留作图痕迹)(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.25.(12分)先阅读下题的解答过程,然后解答后面的问题,已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值解法一:设2x3﹣x2+m=x+m=(2x+1)(x2+ax+b)则2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得∴m=.解法二:设2x3﹣x2+m=A(2x+1)(A为整式)由于上式为恒等式,为方便计算取x=,,故m=选择恰当的方法解答下列各题(1)已知关于的多项式x2+mx﹣15有一个因式是x﹣3,m=.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值:(3)已知x2+2x+1是多项式x3﹣x2+ax+b的一个因式,求a,b的值,并将该多项式分解因式.26.为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车5辆,则空余15个座位;若租用A型车5辆,B型车3辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)租车公司目前B型车只有6辆,若A型车租金为1800元/辆,B型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.
参考答案一、选择题(每题4分,共48分)1、B【分析】分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.2、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A、两个都是相同的项,不符合平方差公式的要求;
B、不存在相同的项,不符合平方差公式的要求;
C、两个都互为相反数的项,不符合平方差公式的要求;
D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.
故选:D.【点睛】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3、D【分析】根据分式的性质逐项进行化简即可,注意负号的作用.【详解】
故选项A、B、C均错误,选项D正确,故选:D.【点睛】本题考查分式的性质,涉及带负号的化简,是基础考点,亦是易错点,掌握相关知识是解题关键.4、C【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵当x=1时,y=2-4=-2≠2,∴图象不经过点(1,2),故本选项错误;
B、点(0,-4)是y轴上的点,故本选项错误;
C、∵k=2>0,b=-4<0,∴图象经过第一、三、四象限,故本选项正确;
D、函数y=-2x的图象平移得到的函数系数不变,故本选项错误.
故选:C.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,b<0时函数图象经过一、三、四象限是解答此题的关键.5、A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.6、B【解析】根据乘方的运算法则与完全平方公式进行计算即可.【详解】A.(2x5)2=4x10,故本选项错误;B.(﹣3)﹣2=,正确;C.(a+1)2=a2+2a+1,故本选项错误;D.a2•a3=a5,故本选项错误.故选:B.【点睛】本题考查乘方的运算,完全平方公式.熟练掌握其知识点是解此题的关键.7、C【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【详解】由∠1=∠3,不能判定直线a与b平行,故A不合题意;由∠3=∠4,不能判定直线a与b平行,故B不合题意;由∠3=∠2,得∠4=∠2,能判定直线a与b平行,故C符合题意;由,不能判定直线a与b平行,故D不合题意;故选:C.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.8、A【解析】∵这个三角形是轴对称图形,∴一定有两个角相等,∴这是一个等腰三角形.∵有一个内角是60°,∴这个三角形是等边三角形.故选A.9、D【解析】根据最简二次根式的概念判断即可.【详解】A.不是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.是最简二次根式;故选:D.【点睛】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.10、B【分析】由一次函数图像的性质可知:一次函数y=x+1中,,可判断A、C,把分别代入一次函数即可判断B、D.【详解】∵一次函数y=x+1,∴,∴函数为递增函数,∴y随x的增大而增大,A正确;令,得:,∴函数图象与x轴的交点坐标为,∴B不正确;∵,∴函数图象经过第一、二、三象限,∴C正确;令,得:,∴函数图象与坐标轴围成的三角形面积为:,∴D正确;故选:B.【点睛】本题考查的是一次函数图象的性质,熟练掌握一次函数图象的性质是解答本题的关键.11、D【分析】利用正比例函数的性质可得出k<1,再利用一次函数图象与系数的关系可得出一次函数y=x﹣k的图象经过第一、二、三象限,进而可得出一次函数y=x﹣k的图象不经过第四象限.【详解】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<1.∵1>1,﹣k>1,∴一次函数y=x﹣k的图象经过第一、二、三象限,∴一次函数y=x﹣k的图象不经过第四象限.故选:D.【点睛】本题考查了一次函数图象与系数的关系以及正比例函数的性质,牢记“,的图象在一、二、三象限”是解题的关键.12、B【分析】同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变,指数相乘.【详解】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于各因数分别乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.【点睛】掌握幂的运算为本题的关键.二、填空题(每题4分,共24分)13、②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则,为一次函数,故①错误;②整理得:,∴x=2时,y=5,∴此函数图象必经过,故②正确;③把,代入中,得:,②-①得:,解得:,故③正确;④当k+2<0时,即k<-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.14、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.15、114【分析】由折叠的性质得出∠BFE=∠GFE=∠BFG,再由∠1得出∠BFE,然后即可得出∠AEF.【详解】由折叠,得∠BFE=∠GFE=∠BFG∵∴∠BFG=180°-∠1=180°-48°=132°∴∠BFE=132°÷2=66°∵∠A=∠B=90°∴∠AEF=360°-90°-90°-66°=114°故答案为:114.【点睛】此题主要考查根据矩形和折叠的性质求角度,熟练掌握,即可解题.16、6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617、【分析】由点向右直爬2个单位,即,据此即可得到.【详解】解:由题意,∵点A表示,∴点B表示,即,∴;故答案为:.【点睛】本题考查了实数与数轴的对应关系,理解向右移动是增大是关键.18、1【分析】根据图象②得出AB、BC的长度,再求出面积即可.【详解】解:从图象②和已知可知:AB=4,BC=10-4=6,所以矩形ABCD的面积是4×6=1,故答案为1.【点睛】本题考查了矩形的性质和函数图象,能根据图形得出正确信息是解此题的关键.三、解答题(共78分)19、(1)3;(2)作图见解析;D(-3,0),E(-3,3),F(-1,3).【分析】(1)直接根据三角形的面积公式求解即可;(2)先找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各点即可.【详解】解:(1)S△ABC=AB×BC=×3×2=3;(2)所画图形如下所示,其中△DEF即为所求,D,E,F的坐标分别为:D(-3,0),E(-3,3),F(-1,3).【点睛】本题考查三角形的面积公式及轴对称变换作图的知识,解题关键是找出各关键点关于x轴的对应点,难度一般20、张瑛.【分析】根据加权平均数的计算公式分别计算即可.【详解】解:王丽的成绩为:(分),张瑛的成绩为:(分),由于张瑛的分数比王丽的高,所以应录用张瑛.【点睛】本题考查求加权平均数和运用加权平均数做决策.掌握加权平均数的计算公式是解决此题的关键.21、见解析【分析】根据可知,点P在DE的垂直平分线上,再根据P到的距离相等可知,点P在的角平分线上,所以DE的垂直平分线与的角平分线的交点即为所求的点P.【详解】如图【点睛】本题主要考查角平分线和垂直平分线性质的应用,掌握角平分线和垂直平分线的尺规作图是解题的关键.22、(1);(2)﹣2.【分析】(1)方程两边同乘,化为整式方程求解,然后检验即可;(2)先根据完全平方公式和平方差公式计算,然后算加减即可.【详解】(1),方程两边同乘,得,解得,检验:当时,,所以是原分式方程的解;(2)解:原式=3﹣2+1﹣(6﹣2)=4﹣2﹣4=﹣2.【点睛】本题考查了分式方程的解法,以及实数的混合运算,熟练掌握分式方程的求解步骤、乘法公式是解答本题的关键.23、(1)6;(2)1【解析】(1)根据垂直平分线的性质,可得与的关系,再根据三角形的周长,可得答案;(2)根据两点之间线段最短,可得点与点的关系,可得与的关系.【详解】解:(1)∵MN是AB的垂直平分线∴MA=MB∵=即∴;(2)当点与点重合时,PB+CP的值最小,PB+CP能取到的最小值=1.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.24、(1)见解析;(2)△CDE周长的最小值为1.【分析】(1)分别作C点关于OA、OB的对称点M、N,然后连接MN分别交OA、OB于D、E,利用两点之间线段最短可判断此时△CDE的周长最小;(2)利用对称的性质得到OM=OC=1,∠MOA=∠COA,ON=OC=1,∠NOB=∠COB,则△DCE的周长为MN,再证明△OMN为等边三角形,从而得到MN=OM=1,所以△CDE周长的最小值为1.【详解】(1)如图,△CDE为所作;(2)∵点M与点C关于OA对称,∴OM=OC=1,∠MOA=∠COA,DM=DC.∵点N与点C关于OB对称,∴ON=OC=1,∠NOB=∠COB,EC=EN,∴△DCE的周长为CD+CE+DE=DM+DE+EN=MN,∴此时△DCE的周长最小.∵∠MOA+∠NOB=∠COA+∠COB=∠AOB=30°,∴∠MON=30°+30°=60°,∴△OMN为等边三角形,∴MN=OM=1,∴△CDE周长的最小值为1.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题.25、(1)1;(1)m=﹣5,n=10;(3)a=﹣5,b=﹣3,该多项式分解因式为:x3﹣x1﹣5x﹣3=(x﹣3)(x+1)1【分析】(1)根据多项式乘法将等式右边展开有:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣1)x﹣n,所以,根据等式两边对应项的系数相等可以求得m的值;(1)设x4+mx3+nx﹣16=A(x﹣1)(x﹣1)(A为整式),分别取x=1和x=1得关于m和n的二元一次方程组,求解即可;(3)设x3﹣x1+ax+b=(x+p)(x1+1x+1),将等式右边展开,比较系数,得关于p,a,b的三元一次方程组,解方程组,再进行因式分解即可.【详解】解:(1)由题设知:x1+mx﹣15=(x﹣3)(x+n)=x1+(n﹣3)x﹣3n,故m=n﹣3,﹣3n=﹣15,解得n=5,m=1.故答案为1;(1)设x4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年甘肃客运从业资格证操作考试内容
- 2023年北京市初三一模道德与法治试题汇编:综合探究题
- 吉首大学《民法总论》2021-2022学年第一学期期末试卷
- 吉首大学《动态网站设计》2021-2022学年期末试卷
- 吉林艺术学院《影视语言技巧》2021-2022学年第一学期期末试卷
- 吉林艺术学院《书法》2021-2022学年第一学期期末试卷
- 车辆赔偿协议书范本文版
- 私人房屋转赠协议书范文模板
- 吉林师范大学《中国地理》2021-2022学年第一学期期末试卷
- 2022年江西省公务员录用考试《申论》真题(行政执法类卷)及答案解析
- (完整版)外贸合同(中英双语)
- 嵌入式系统设计专题实践嵌入式交通信号灯
- 医院胸痛中心奖惩办法(完整版)
- 行政管理存在的问题与对策
- 脑出血大病历.doc
- CJJ101-2016埋地塑料给水管道工程技术规程
- 文化广场规划设计方案说明书
- 2012年数学建模机器人避障问题
- 燃气经营企业安全生产主体责任清单
- 规模化养猪场的科学用水管理
- 日本泡沫经济专题讲座PPT
评论
0/150
提交评论