版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省常德市桃源县数学八上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.2.如图所示,已知AB∥CD,∠A=50°,∠C=∠E.则∠C等于(
)A.20° B.25° C.30° D.40°3.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB,CD分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是()A.注水前乙容器内水的高度是5厘米B.甲容器内的水4分钟全部注入乙容器C.注水2分钟时,甲、乙两个容器中的水的深度相等D.注水1分钟时,甲容器的水比乙容器的水深5厘米4.若,则的值为()A. B. C. D.5.在中,与的平分线交于点I,过点I作交BA于点D,交AC于点E,,,,则下列说法错误的是A.和是等腰三角形 B.I为DE中点C.的周长是8 D.6.已知=6,=3,则的值为()A.9 B. C.12 D.7.“厉害了,中国华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based处理器—鲲鹏1.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A.米 B.米 C.米 D.米8.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC9.如图是金堂县赵镇某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是 B.中位数是C.平均数是 D.众数是10.在,,,中分式的个数有()A.2个 B.3个 C.4个 D.5个11.关于x的分式方程的解为负数,则a的取值范围是A. B. C.且 D.且12.若a3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5二、填空题(每题4分,共24分)13.比较大小:3_____.(填“>”、“<“、“=“)14.把“全等三角形对应角相等”改为“如果……那么……”的形式________________________.15.分式方程的解为_________.16.如图矩形中,对角线相交于点,若,cm,则的长为__________cm.17.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=3:5,则∠BEC的度数为______.18.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.三、解答题(共78分)19.(8分)如图,在中,,为的中点,,,垂足为、,求证:.20.(8分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.21.(8分)解方程:;22.(10分)计算:(1)(﹣2a)2•(a﹣1)(2)23.(10分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点、、在小正方形的顶点上.(1)在图中画出与关于直线成轴对称的;(2)在直线上找一点,使的值最小;(3)若是以为腰的等腰三角形,点在图中小正方形的顶点上.这样的点共有_______个.(标出位置)24.(10分)如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=a.(1)用a表示∠ACP;(2)求证:AB∥CD;(3)AP∥CF.求证:CF平分∠DCE.25.(12分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?26.(1)计算:(﹣2a2b)2+(﹣2ab)•(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.
参考答案一、选择题(每题4分,共48分)1、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.2、B【分析】根据AB∥CD,∠A=50°,所以∠A=∠AOC.又因为∠C=∠E,∠AOC是外角,所以可求得∠C.【详解】解:∵AB∥CD,∠A=50°,∴∠A=∠AOC(内错角相等),又∵∠C=∠E,∠AOC是外角,∴∠C=50°÷2=25°.故选B.3、D【解析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×24=10厘米,乙容器内水的深度是:5+(15﹣5)×24=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项注水1分钟时,甲容器内水的深度是20﹣20×14=15厘米,乙容器内水的深度是:5+(15﹣5)×14=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.4、A【详解】∵,∴;故选A.5、B【解析】由角平分线以及平行线的性质可以得到等角,从而可以判定和是等腰三角形,所以,,的周长被转化为的两边AB和AC的和,即求得的周长为1.【详解】解:平分,
,
,
,
,
.
同理,.
和是等腰三角形;
的周长;
,
,
,
,
故选项A,C,D正确,
故选:B.
【点睛】考查了等腰三角形的性质与判定以及角平分线的定义此题难度适中,注意掌握数形结合思想与转化思想的应用.6、C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵xm=6,xn=3,
∴x2m-n=(xm)2÷xn=62÷3=1.
故选:C.【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(xm)2÷xn是解题的关键.7、A【分析】先将7纳米写成0.000000007,然后再将其写成a×10n(1<|a|<10,n为整数)即可解答.【详解】解:∵1纳米米,7纳米=0.000000007米米.故答案为A.【点睛】本题主要考查了科学记数法,将原数写成a×10n(1<|a|<10,n为整数),确定a和n的值成为解答本题的关键.8、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.9、D【分析】根据折线统计图中的数据及极差、中位数、平均数、众数的概念逐项判断数据是否正确即可.【详解】由图可得,极差:26-16=10℃,故选项A错误;这组数据从小到大排列是:16、18、20、22、24、24、26,故中位数是22℃,故选项B错误;平均数:(℃),故选项C错误;众数:24℃,故选项D正确.故选:D.【点睛】本题考查折线统计图及极差、中位数、平均数、众数,明确概念及计算公式是解题关键.10、B【分析】由题意根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:,,,中分式有,,共计3个.故选:B.【点睛】本题主要考查分式的定义,解题的关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.11、D【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【详解】分式方程去分母得:,即,因为分式方程解为负数,所以,且,解得:且,故选D.【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为1.12、B【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<10<16,∴5<<6,∴5−1<−1<6−1,即2<−1<1,∴a的值所在的范围是2<a<1.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题(每题4分,共24分)13、>【分析】利用估算法比较两实数的大小.【详解】解:∵,∴2<<3,∴3>.故答案是:>.【点睛】本题考查实数的大小比较,正确对无理数进行估算是解题关键.14、如果两个三角形是全等三角形,那么它们的对应角相等.
【解析】任何一个命题都可以写成“如果…那么…”的形式,如果是条件,那么是结论.
解:∵原命题的条件是:两个三角形是全等三角形,
结论是:对应角相等,
∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等.
15、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】去分母得:,
解得:,
经检验是分式方程的解.故答案为:.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16、2【解析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=1,易求AC.解:已知∠AOB=60°,根据矩形的性质可得AO=BO,所以∠OAB=∠ABO=60度.因为AB=1,所以AO=BO=AB=1.故AC=2.本题考查的是矩形的性质以及等边三角形的有关知识.17、100°或130°.【分析】分两种情形:①如图1中,当高BD在三角形内部时.②如图2中,当高BD在△ABC外时,分别求解即可.【详解】①如图1中,当高BD在三角形内部时,∵CE平分∠ACB,∠ACB=50°,∴∠ACE=∠ECB=25°.∵∠ABD:∠ACF=3:5,∴∠ABD=15°.∵BD⊥AC,∴∠BDC=90°,CBD=40°,∴∠CBE=∠CBD+∠ABD=40°+15°=55°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣25°﹣55°=100°②如图2中,当高BD在△ABC外时,同法可得:∠ABD=25°,∠ABD=15°,∠CBD=40°,∴∠CBE=∠CBD﹣∠ABD=40°﹣15°=25°,∴∠BEC=180°﹣25°﹣25°=130°,综上所述:∠BEC=100°或130°.故答案为:100°或130°.【点睛】本题考查了三角形内角和定理,三角形的外角的性质,三角形的角平分线的定义,三角形的高等知识,解题的关键是世界之外基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.18、60°【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BPE=∠BAP+∠ABD,即可解答.【详解】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BPE=∠BAP+∠ABD,∴∠BPE=∠BAP+∠CAE=∠BAC=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.三、解答题(共78分)19、见解析【分析】根据等腰三角形的性质得到,根据为的中点,得到,再根据,,得到,利用全等三角形的性质和判定即可证明.【详解】解:,,,,,为的中点,,在与中,≌,∴.【点睛】本题考查了等腰三角形的性质以及全等三角形的性质和判定,找到全等的条件是解题的关键.20、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【点睛】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.21、原分式方程无解.【分析】按照去分母、移项、合并同类项的步骤求解即可.【详解】方程两边同时乘以,得:检验:当时,∴原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.22、(1)4a3﹣4a2;(2)【分析】(1)先算乘方、再用整式乘法运算法则计算即可;(2)先对各分式的分母因式分解,然后按照分式乘除运算法则计算即可.【详解】解:(1)原式=4a2(a﹣1)=4a3﹣4a2;(2)原式====.【点睛】本题考查了整式的乘法和分式的四则混合运算,解答的关键在先算乘法和对分式的分母进行因式分解.23、(1)见解析;(2)见解析;(1)见解析,1【分析】(1)先找到点A、B、C关于直线的对称点A、B′、C′,然后连接AB′、B′C′,AC′即可;(2)连接B′C交直线l于点P,连接PB即可;(1)根据等腰三角形的定义分别以C、A为圆心,AC的长为半径作圆,即可得出结论.【详解】解:(1)先找到点A、B、C关于直线的对称点A、B′、C′,然后连接AB′、B′C′,AC′,如图所示,△AB′C′即为所求.(2)连接B′C交直线l于点P,连接PB,根据两点之间线段最短可得此时最小,如图所示,点P即为所求;(1)以C为圆心,AC的长为半径作圆,此时有M1、M2,两个点符合题意;以A为圆心,AC的长为半径作圆,此时有M1符合题意;如图所示,这样的点M共有1个,故答案为:1.【点睛】此题考查的是作已知图形的轴对称图形、轴对称性质的应用和作等腰三角形,掌握轴对称的性质和等腰三角形的定义是解决此题的关键.24、(1)∠CAP=90°-α;(2)证明见解析;(3)证明见解析;【解析】试题分析:(1)由角平分线的定义可得∠PAC=α,在Rt△PAC中根据直角三角形的性质可求得∠ACP;(2)结合(1)可求得∠ACD,可证明∠ACD+∠BAC=180°,可证明AB∥CD;(3)由平行线的性质可得∠ECF=∠CAP,∠ECD=∠CAB,结合条件可证得∠ECF=∠FCD,可证得结论.试题解析:(1)解:∵AP平分∠BAC,∴∠CAP=∠BAP=α.∵∠P=90°,∴∠ACP=90°-∠CAP=90°-α;(2)证明:由(1)可知∠ACP=90°-α.∵CP平分∠ACD,∴∠ACD=2∠ACP=180°-2α.又∠BAC=2∠BAP=2α,∴∠ACD+∠BAC=180°,∴AB∥CD;(3)证明:∵AP∥CF,∴∠ECF=∠CAP=α.由(2)可知AB∥CD,∴∠ECD=∠CAB=2α,∴∠DCF=∠ECD-∠ECF=α,∴∠ECF=∠DCF,∴CF平分∠DCE.点睛:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《机械设计基础》期末考试试卷五
- 2024年长春中考语文复习之名著阅读:《骆驼祥子》解读
- 《供应链管理》课件 张静芳 第1章 供应链管理概论、第2章 供应链战略规划
- 吉林艺术学院《电视画面编辑》2021-2022学年第一学期期末试卷
- 2024年多余孩子领养协议书模板范本
- 2024年大型水库边林地转让协议书模板
- 加盟法律合伙人协议书范文模板
- 买卖集装箱合同协议书范文模板
- 2022年江西省公务员录用考试《行测》真题及答案解析
- 附着升降脚手架工(建筑特殊工种)证考试题库及答案
- 体育教师先进个人事迹材料
- 2025届江苏省苏州市第一中学物理高三第一学期期末学业水平测试模拟试题含解析
- 2024.11.9全国消防安全日全民消防生命至上消防科普课件
- 企业财务管理数字化转型实施方案
- 第九课+发展中国特色社会主义文化+课件高中政治统编必修四哲学与文化
- 人音版小学音乐五年级上册教案全册
- 企业工商过户合同模板
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 建筑施工企业(安全管理)安全生产管理人员安全生产考试参考题及答案
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
评论
0/150
提交评论