版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省郑州市中学牟县数学八上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的()A. B. C. D.2.一件工程甲单独做a小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是()A.a+b B. C. D.3.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93 B.95 C.94 D.964.如图,在中,,点是和角平分线的交点,则等于()A. B. C. D.5.在-1,,0,四个数中,最小的数是()A.-1 B. C.0 D.6.如图,在中,,,点是边上的动点,过点作于,于,则的长是()A. B.或 C. D.7.下列实数中,无理数是()A. B. C. D.8.在−2,0,3,6这四个数中,最大的数是()A.−2B.0C.3D.69.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°10.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的 B.缩小为原来的C.扩大为原来的3倍 D.不变11.下列篆字中,轴对称图形的个数有()A.1个 B.2个 C.3个 D.4个12.如图,直线AD,BE相交于点O,CO⊥AD于点O,OF平分∠BOC.若∠AOB=32°,则∠AOF的度数为A.29° B.30° C.31° D.32°二、填空题(每题4分,共24分)13.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率为______________.14.如图,中,与的平分线相交于点,经过点,分别交,于点,,.点到的距离为,则的面积为__________.15.分解因式:.16.已知:如图,和为两个共直角顶点的等腰直角三角形,连接、.图中一定与线段相等的线段是__________.17.如图,在△ABC中,∠A=70°.按下列步骤作图:①分别以点B,C为圆心,适当长为半径画弧,分别交BA,BC,CA,CB于点D,E,F,G;②分别以点D,E为圆心,大于DE为半径画弧,两弧交于点M;③分别以点F,G为圆心,大于FG为半径画弧,两弧交于点N;④作射线BM交射线CN于点O.则∠BOC的度数是_____.18.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.三、解答题(共78分)19.(8分)如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=1.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)若S△BOP=S△DOP,求直线BD的解析式.20.(8分)如图,在等腰直角中,,是线段上一动点(与点、不重合),连结,延长至点,,过点作于点,交于点.(1)若,求的大小(用含的式子表示);(2)用等式表示与之间的数量关系,并加以证明.21.(8分)证明“角的内部到角的两边的距离相等的点在角的平分线上”.22.(10分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.23.(10分)如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.24.(10分)如图,在△ABC中,∠A=30°,∠B=60°(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.25.(12分)某区的校办工厂承担了为全区七年级新生制作夏季校服3000套的任务,为了确保这批新生在开学时准时穿上校服,加快了生产速度,实际比原计划每天多生产50%,结果提前2天圆满完成了任务,求实际每天生产校服多少套.26.某电器商场销售进价分别为120元、190元的两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润销售收入进货成本):销售时段销售数量销售收入种型号种型号第一周562310第二周893540(1)求两种型号的电风扇的销售单价;(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据轴对称图形的定义即可判断.【详解】A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:A.【点睛】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2、D【解析】设工程总量为m,表示出甲,乙的做工速度.再求甲乙合作所需的天数.【详解】设工程总量为m,则甲的做工速度为,乙的做工速度.若甲、乙合作,完成这项工程所需的天数为.故选D.【点睛】没有工作总量的可以设出工作总量,由工作时间=工作总量÷工作效率列式即可.3、A【解析】解:设数学成绩为x分,则(88+95+x)÷3=92,解得x=1.故选A.4、C【分析】根据三角形的内角和定理和角平分线的定义,得到,然后得到答案.【详解】解:∵在中,,∴,∵BD平分∠ABC,DC平分∠ACB,∴,∴,∴;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到.5、B【分析】根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可判断.【详解】在-1,,0,四个数中,最小的数是.故选B.【点睛】本题考查了实数的大小比较,熟练掌握正数、0、负数的大小关系是解题的关键.6、A【解析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质的刚刚定理可得AF的长,由图形得,由面积公式代入数值计算即可求得答案.【详解】解:如图,过A点作AF⊥BC于F,连结AP,∵,∴△ABC为等腰三角形,∵,AF⊥BC,∴,在Rt△ABF中,由勾股定理得:,∴,∵,,∴,即,整理得:,故选:A.【点睛】本题考查了等腰三角形的性质和勾股定理,解题的关键是将三角形的面积转化为两个三角形的面积之和.7、D【分析】根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【点睛】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,∵−2<0<6∴四个数中,最大的数是3.故选C.考点:实数的大小比较.9、C【解析】试题分析:如图,根据平行线的性质可得∠1=∠4=75°,然后根据三角形的外角等于不相邻两内角的和,可知∠4=∠2+∠3,因此可求得∠3=75°-35°=40°.故选C考点:平行线的性质,三角形的外角性质10、A【分析】根据分式的基本性质即可求出答案.【详解】解:原式==,故选:A.【点睛】本题考查分式的基本性质,关键在于熟记基本性质.11、C【分析】根据轴对称图形的概念求解.【详解】根据轴对称图形的定义,是轴对称图形的是图①③④,共有3个.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12、A【分析】由CO⊥AD于点O,得∠AOC=90,由已知∠AOB=32可求出∠BOC的度数,利用OF平分∠BOC可得∠BOF=,即可得∠AOF的度数.【详解】∵CO⊥AD于点O,∴∠AOC=90,∵∠AOB=32,∴∠BOC=122,∵OF平分∠BOC,∴∠BOF=,∴∠AOF=∠BOF-∠AOB=32.故选A.【点睛】本题考查垂线,角平分线的定义.二、填空题(每题4分,共24分)13、0.1【分析】先求出第5组的频数,根据频率=频数总数,再求出频率即可.【详解】解:由题可知:第5组频数=40-12-10-6-8=4,440=0.1故答案是0.1【点睛】本题考查了数据的统计,属于简单题,熟悉频率的求法是解题关键.14、1【分析】依据条件可得∠EOB=∠CBO,进而可得出EF∥BC,进而得到△COF中OF边上的高为4cm,再根据三角形面积计算公式,即可得到△OFC的面积.【详解】解:∵BE=OE,∴∠EBO=∠EOB,∵BO平分∠ABC,∴∠EBO=∠CBO,∴∠EOB=∠CBO,∴EF∥BC,∵点O到BC的距离为4cm,∴△COF中OF边上的高为4cm,又∵OF=3cm,∴△OFC的面积为cm2故答案为:1.【点睛】本题主要考查了角平分线的定义以及三角形的面积,判定EF∥BC是解决问题的关键.15、.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x再应用完全平方公式继续分解即可:【详解】故答案为:【点睛】考核知识点:因式分解.16、BE【解析】∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC-∠BAD=∠DAE-∠BAD,∴∠DAC=∠BAE,∵在△CAD和△BAE中,,∴△CAD≌△BAE,∴CD=BE.故答案为BE.点睛:本题关键在于掌握三角形全等的判定方法.17、125°【分析】根据题意可知,尺规作图所作的是角平分线,再根据三角形内角和的性质问题可解.【详解】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,由作图可知OB平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,故答案为125°.【点睛】本题考查作图-基本作图,角平分线性质和三角形内角和的性质,解题的关键是熟练掌握基本知识.18、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.三、解答题(共78分)19、(1)A(-1,0),m=;(2);(3)【分析】(1)根据三角形面积公式得到×OA•2=1,可计算出OA=1,则A点坐标为(-1,0),再求出直线AC的表达式,令x=2,求出y即可得到m值;
(2)由(1)可得结果;
(3)利用三角形面积公式由S△BOP=S△DOP,PB=PD,即点P为BD的中点,则可确定B点坐标为(4,0),D点坐标为(0,),然后利用待定系数法确定直线BD的解析式.【详解】解:(1)∵S△AOC=1,C(0,2),×OA•2=1,∴OA=1,
∴A点坐标为(-1,0),
设直线AC的表达式为:y=kx+b,则,解得:,∴直线AC的表达式为:,令x=2,则y=,∴m的值为;(2)由(1)可得:∴直线AP的解析式为;(3)∵S△BOP=S△DOP,
∴PB=PD,即点P为BD的中点,
∴B点坐标为(4,0),D点坐标为(0,),设直线BD的解析式为y=sx+t,
把B(4,0),D(0,)代入得,解得:,∴直线BD的解析式为.【点睛】本题考查了待定系数法求一次函数解析式,一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.20、(1)∠AMQ=45°+;(2),证明见解析.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△MEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.【详解】(1)在等腰直角中,,所以,则在中,(2)线段与之间的数量关系为:.证明如下:如图,连结,过点作,为垂足.因为,,所以,,所以,故有.因为,所以.在和中,;所以,所以,在等腰直角三角形中,,所以,又,所以.【点睛】本题主要考查三角形的基本概念和全等三角形的判定与性质,基础知识扎实是解题关键21、见解析.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质进行证明.【详解】已知:如图,PE⊥OA于E,PF⊥OB于F,且PE=PF,
求证:点P在∠AOB的平分线上.
证明:在Rt△POE和Rt△POF中,
∴Rt△POE≌△RtPOF,
∴∠EOP=∠FOP,∴OP平分∠AOB
∴点P在∠AOB的平分线上.【点睛】本题考查的是角平分线的判定的证明,知晓直角三角形全等的判定定理是解题的关键.这是文字证明题,解题有三个步骤:一是分清题设和结论,画出图形;二是结合图形写出已知、求证;三是写出证明过程.22、(1)证明见解析;(2)AB=1.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【详解】解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=1,∵△ABE≌△CDF,∴AB=CD=1.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.23、(1)详见解析;(2)20°.【分析】(1)根据等边对等角得到∠ABC=∠BAC,由三角形外角的性质得到∠ACE=∠B+∠BAC=2∠ABC,由角平分线的定义得到∠ACE=2∠FCE,等量代换得到∠ABC=∠FCE,根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和三角形外角的性质即可得到结论.【详解】(1)证明:∵AC=BC,∴∠ABC=∠CAB,∴∠ACE=∠ABC+∠CAB=2∠ABC∵CF是∠ACE的平分线,∴∠ACE=2∠FCE∴2∠ABC=2∠FCE,∴∠ABC=∠FCE,∴CF∥AB;(2)∵CF是∠ACE的平分线,∴∠ACE=2∠FCE=∠ADC+∠DAC∵DF平分∠ADC,∴∠ADC=2∠FDC;∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,∴2∠FCE﹣2∠FDC=∠DAC∵∠DFC=∠FCE﹣∠FDC∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°∴∠DFC=20°.【点睛】此题考查的是等腰三角形的性质、三角形外角的性质和角平分线的定义,掌握等边对等角、三角形外角的性质和角平分线的定义是解决此题的关键.24、(1)作图见解析;(2)证明见解析.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【详解】解:(1)作图如下:
(2)证明:∵∠ABD=×60°=30°,∠A=30°∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国际空间站建设合同
- 2024企业合规咨询与培训服务合同
- 2024年工程合同管理案例解析与借鉴
- 2024年严驰与郑黛共同设立环保科技公司的合资合同
- 2024年二手车购销担保合同
- 2024年展览活动中心承包管理合同
- 2023年莆田涵江银河学校急聘初中历史教师考试真题
- 2023年深圳市南山区第二外国语学校招聘教师考试真题
- 2023年马鞍山市大学生乡村医生专项计划招聘考试真题
- 04年信息安全意识培训与推广服务合同
- 【马林巴独奏曲雨之舞的演奏技巧和情感处理探析5000字(论文)】
- YBT 189-2014 连铸保护渣水分含量(110℃)测定试验方法
- Module 3 Things we do Unit 7 Helping others Period 3 The story The bee and the ant(教学设计)-2023-2024学年牛津上海版(三起)英语六年级下册
- GB/T 5270-2024金属基体上的金属覆盖层电沉积和化学沉积层附着强度试验方法评述
- 供货保证措施以及应急保障措施
- 2024年广西高考物理试卷试题真题解读及答案详解
- 江苏省扬州市梅岭中学2023-2024学年七年级新生入学问卷调查英语试题
- 电力工程施工行业分析报告
- 2023年七年级地理上册期末测试卷(附答案)
- HYT 147.7-2013 海洋监测技术规程 第7部分:卫星遥感技术方法
- 2024春期国开电大专科《社会调查研究与方法》在线形考(形成性考核一至四)试题及答案
评论
0/150
提交评论