版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省黔西南兴仁市黔龙学校八年级数学第一学期期末学业质量监测模拟试题学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.02.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形3.如图,在中,、分别是、的中点,,是上一点,连接、,,若,则的长度为()A.11 B.12 C.13 D.144.下列各式中,正确的个数有(
)①+2=2②③④A.1个 B.2个 C.3个 D.0个5.已知,为内一定点,上有一点,上有一点,当的周长取最小值时,的度数是A. B. C. D.6.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A. B. C. D.7.如图是4×4正方形网格,已有3个小方格涂成了黑色.现要从其余白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有(
)个.A.5 B.4 C.3 D.28.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1 B.-1 C.-+1 D.--19.已知直角三角形的两边长分别为,则第三边长可以为()A. B. C. D.10.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果千克苹果,则可列方程为().A. B. C. D.二、填空题(每小题3分,共24分)11.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.12.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.13.已知:,,那么________________.14.如图,D是△ABC内部的一点,AD=CD,∠BAD=∠BCD,下列结论中,①∠DAC=∠DCA;②AB=AC;③BD⊥AC;④BD平分∠ABC.所有正确结论的序号是_____.15.已知点与点在同一条平行于轴的直线上,且点到轴的距离等于4,那么点的坐标是__________.16.如图,在中,,于,若,,则___________.17.已知函数,当____________时,此函数为正比例函数.18.关于的分式方程的解为负数,则的取值范围是_________.三、解答题(共66分)19.(10分)列方程解应用题:亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.(1)求每件服装的原价是多少元?(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?20.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:(1)容器内原有水多少?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②21.(6分)如图,和相交于点,并且,.(1)求证:.证明思路现在有以下两种:思路一:把和看成两个三角形的边,用三角形全等证明,即用___________证明;思路二:把和看成一个三角形的边,用等角对等边证明,即用________证明;(2)选择(1)题中的思路一或思路二证明:.22.(8分)如图与x轴相交于点A,与y轴交于点B,求A、B两点的坐标;点为x轴上一个动点,过点C作x轴的垂线,交直线于点D,若线段,求a的值.23.(8分)如图,与均为等腰直角三角形,(1)如图1,点在上,点与重合,为线段的中点,则线段与的数量关系是,与的位置是.(2)如图2,在图1的基础上,将绕点顺时针旋转到如图2的位置,其中在一条直线上,为线段的中点,则线段与是否存在某种确定的数量关系和位置关系?证明你的结论.(3)若绕点旋转任意一个角度到如图3的位置,为线段的中点,连接、,请你完成图3,猜想线段与的关系,并证明你的结论.24.(8分)如图①,点是等边内一点,,.以为边作等边三角形,连接.(1)求证:;(2)当时(如图②),试判断的形状,并说明理由;(3)求当是多少度时,是等腰三角形?(写出过程)25.(10分)甲、乙两人两次同时在同一家超市采购货物(假设两次采购货物的单价不相同),甲每次采购货物100千克,乙每次采购货物用去100元.(1)假设a、b分别表示两次采购货物时的单价(单位:元/千克),试用含a、b的式子表示:甲两次采购货物共需付款元,乙两次共购买千克货物.(2)请你判断甲、乙两人采购货物的方式哪一个的平均单价低,并说明理由.26.(10分)先化简,再求值:(1+)÷,其中a是小于3的正整数.
参考答案一、选择题(每小题3分,共30分)1、D【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.2、B【分析】根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.3、B【分析】根据三角形中位线定理得到DE=8,由,可求EF=6,再根据直角三角形斜边上的中线等于斜边的一半,即可得到AC的长度.【详解】解:∵、分别是、的中点,,∴,∵,∴,∴EF=6,∵,EF是△ACF的中线,∴;故选:B.【点睛】本题考查了三角形的中位线定理,以及直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握所学的性质进行解题,正确求出EF的长度是关键.4、B【分析】利用二次根式加减运算法则分别判断得出即可.【详解】解:①原式=,错误;②原式=a,错误;③原式=,正确;④原式=5,正确.故答案为:B.【点睛】此题考查了二次根式的加减运算,正确合并二次根式是解题关键.5、C【分析】设点关于、对称点分别为、,当点、在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.【详解】分别作点关于、的对称点、,连接、、,交、于点、,连接、,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:.【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.6、D【解析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<1;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b,∵图象经过点(1,2),∴k+b=2;∵y随x增大而减小,∴k<1.即k取负数,满足k+b=2的k、b的取值都可以.故选D.【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题.7、A【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】解:如图所示,有5个位置使之成为轴对称图形.故选:A.【点睛】此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有5种画法.8、B【解析】试题解析:由勾股定理得:∴数轴上点A所表示的数是故选B.9、D【分析】分3是直角边和斜边两种情况讨论求解.【详解】解:若3是直角边,则第三边==,若3是斜边,则第三边==,故选D.【点睛】本题考查了勾股定理,是基础题,难点在于要分情况讨论.10、D【分析】设该店第一次购进水果千克,则第二次购进水果千克,然后根据每千克水果的价格比第一次购进的贵了1元,列出方程求解即可.【详解】设该商店第一次购进水果x千克,根据题意得:,故选:D.【点睛】本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.二、填空题(每小题3分,共24分)11、9.2×10﹣1.【分析】根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.12、s,3或s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,如图,过P作PE⊥AB于E,∵线段AP是∠CAB的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm,∴BP=(8-2t)cm,BE=10-6=4cm,在Rt△PEB中,由勾股定理得:,解得:t=,故答案为:s;(2)∵△ACP是以AC为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t==3s;当AC=CP=6时,如图2,过C作CM⊥AB于M,则AM=PM,CM=,∵AP=10+8-2t=18-2t,∴AM=AP=9-t,在Rt△AMC中,由勾股定理得:,解得:t=s或t=s,∵0﹤2t﹤8+10=18,∴0﹤t﹤9,∴t=s;当AC=AP=6时,如图3,PB=10-6=4,t==6s,故答案为:3s或s或6s.【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,13、10【解析】∵(a+b)2=72=49,∴a2-ab+b2=(a+b)2-3ab=49-39=10,故答案为10.14、①③④.【分析】根据等腰三角形的性质和判定定理以及线段垂直平分线的性质即可得到结论.【详解】解:∵AD=CD,∴∠DAC=∠DCA,故①正确;∵∠BAD=∠BCD,∴∠BAD+∠DAC=∠BCD+∠DCA,即∠BAC=∠BCA,∴AB=BC,故②错误;∵AB=BC,AD=DC,∴BD垂直平分AC,故③正确;∴BD平分∠ABC,故④正确;故答案为:①③④.【点睛】本题主要考查了线段垂直平分线的性质和判定以及等腰三角形的判定和性质.15、或【分析】根据平行于轴的直线上的点纵坐标相等可求得点N的纵坐标的值,再根据点到轴的距离等于4求得点N的横坐标即可.【详解】解:∵点M(3,-2)与点N(x,y)在同一条平行于x轴的直线上,
∴y=-2,
∵点N到y轴的距离等于4,
∴x=-4或x=4,
∴点N的坐标是或.故答案为:或.【点睛】本题考查了坐标与图形,主要利用了平行于x轴的直线上点的坐标特征,需熟记.还需注意在直线上到定点等于定长的点有两个.16、2【分析】延长BA,过点C作CD⊥BA于点D,则△ACD是等腰直角三角形,设CD=AD=h,CH=x,利用面积相等和勾股定理,得到关于h与x的方程组,解方程组,求出x,即可得到CH的长度.【详解】解:延长BA,过点C作CD⊥BA于点D,如图:∵,∴∠CAD=45°,∴△ACD是等腰直角三角形,∴CD=AD,∵,∴△ABH和△ACH是直角三角形,设CD=AD=h,CH=x,由勾股定理,得,,∵,∴,联合方程组,得,解得:或(舍去);∴.故答案为:2.【点睛】本题考查了等腰三角形的判定和性质,勾股定理,解题的关键是熟练运用勾股定理和面积相等法,正确得到边之间的关系,从而列式计算.17、-1【分析】根据正比例函数的定义得到且,然后解不等式和方程即可得到满足条件的m的值.【详解】解:根据题意得且,
解得m=-1,
即m=-1时,此函数是正比例函数.
故答案为:-1.【点睛】本考查了正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.18、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为:a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析三、解答题(共66分)19、(1)200元;(2)1400元【分析】(1)设每件服装的原价为x元,根据“按八五折销售,则每月多卖出20件”,列出分式方程解答即可;(2)根据“总利润=单件利润×销售数量”列出算式计算即可.【详解】(1)设每件服装的原价为x元,根据题意得:解得:经检验是原方程的解.答:每件服装的原价为200元.(2)(200×85%-150)×()=(170-150)×(50+20)=1400(元)答:按八五折销售的总利润是1400元.【点睛】本题考查了分式方程的应用,解题的关键是找出等量关系,列出方程,并熟知总利润=单件利润×销售数量.20、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【分析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.21、(1);;(2)证明详见解析.【分析】(1)思路一:可通过证明,利用全等三角形对应边相等可得;思路二:可通过证明利用等角对等边可得;(2)任选一种思路证明即可.思路二:利用SSS证明,可得,利用等角对等边可得.【详解】(1)(2)选择思路二,证明如下:在和中∴.∴.∴.【点睛】本题主要考查了全等三角形的判定与性质,还设计了等腰三角形等角对等边的性质,灵活利用全等三角形的性质是解题的关键.22、(1)A,B;(2)1或.【分析】(1)由函数解析式y=2x+3,令y=0求得A点坐标,x=0求得B点坐标;(2)可知D的横坐标为a,则纵坐标为2a+3,由CD=5得出|2a+3|=5,从而求出a.【详解】解:由题得:当时,,点的坐标为,当时,,点的坐标为;由题得,点D的横坐标为:a,则纵坐标为,解得:,,的值为1,或.故答案为(1)A,B;(2)1或.【点睛】本题主要考查了函数图象中坐标的求法以及线段长度的表示法.23、(1)EF=FC,EF⊥FC;(2)EF=FC,EF⊥FC,证明见解析;(3)EF=FC,EF⊥FC,证明见解析;
【分析】(1)根据已知得出△EFC是等腰直角三角形即可.
(2)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;
(3)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;.【详解】解:(1)∵与均为等腰直角三角形,∴,∴BE=EC∵为线段的中点,;故答案为:EF=FC,EF⊥FC
(2)存在EF=FC,EF⊥FC,证明如下:延长CF到M,使FM=CF,连接DM、ME、EC∵为线段的中点,∴DF=FB,
∵FC=FM,∠BFC=∠DFM,DF=FB,
∴△BFC≌△DFM,
∴DM=BC,∠MDB=∠FBC,
∴MD=AC,MD∥BC,
∴∠MDC=∠ACB=90°∴∠MDE=∠EAC=135°,∵ED=EA,∴△MDE≌△CAE(SAS),
∴ME=EC,∠MED=∠CEA,
∴∠MED+∠FEA=∠FEA+∠CEA=90°,
∴∠MEC=90°,又F为CM的中点,
∴EF=FC,EF⊥FC;(3)EF=FC,EF⊥FC.证明如下:如图4,延长CF到M,使CF=FM,连接ME、EC,连接DM交延长交AE于G,交AC于H,
∵F为BD中点,
∴DF=FB,
在△BCF和△DFM中∴△BFC≌△DFM(SAS),
∴DM=BC,∠MDB=∠FBC,
∴MD=AC,HD∥BC,
∴∠AHG=∠BCA=90°,且∠AGH=∠DGE,
∴∠MDE=∠EAC,在△MDE和△CAE中∴ME=EC,∠MED=∠CEA,
∴∠MED+∠FEA=∠FEA+∠CEA=90°,
∴∠MEC=90°,又F为CM的中点,
∴EF=FC,EF⊥FC.【点睛】本题考查了全等变换--旋转、全等三角形的性质和判定、等腰直角三角形的性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纯色背景课件教学课件
- 2024年度金融IT系统集成与维护合同
- 2024年商标许可使用合同 规定许可范围与使用期限
- 2024厂区绿化养护合同
- 2024年度氨水行业绿色发展与环保合作协议
- 2024年品牌授权与连锁加盟合同
- 2024年城市轨道交通安全监控系统建设合同
- 2024年度房地产买卖与租赁合同
- 2024年度委托加工合同标的原料提供与加工质量
- 2024胡柚买卖合同范文
- 粉笔决战行测5000题判断解析
- 北京市各区税务所地址电话
- 川教版小学英语三年级上全册教案.doc
- 溢洪道稳定计算
- (完整word版)韩海军梅花易数秘籍
- 公路工程施工图审查管理办法
- 幼儿园园本教研的途径与方法
- 《认识水果蔬菜》ppt课件
- 典型草原割草场技术规范-编制说明-内蒙古
- 中国农业银行商业用房抵押贷款合作合同
- 阿坝藏族羌族自治州羌族文化生态保护实验区实施方案 - 阿坝州羌族
评论
0/150
提交评论