版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省句容市华阳片区数学八上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.2.如图,已知,点,,,在射线上,点,,,在射线上,,,,均为等边三角形.若,则的边长为()A. B. C. D.3.如图,中,,,则的度数为()A. B. C. D.4.如图,已知,.若要得到,则下列条件中不符合要求的是()A. B. C. D.5.已知图中的两个三角形全等,则等于()A. B. C. D.6.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对 B.3对 C.4对 D.5对7.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F8.若把分式中的x、y都扩大4倍,则该分式的值()A.不变 B.扩大4倍 C.缩小4倍 D.扩大16倍9.对于任意三角形的高,下列说法不正确的是()A.锐角三角形的三条高交于一点B.直角三角形只有一条高C.三角形三条高的交点不一定在三角形内D.钝角三角形有两条高在三角形的外部10.下列四个图形中轴对称图形的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.的3倍与2的差不小于1,用不等式表示为_________.12.如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是__________.13.一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为______.14.若分式方程的解为正数,则a的取值范围是______________.15.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.16.如图,已知中,,的垂直平分线交于点,若,则的周长=__________.17.若边形的每个外角均为,则的值是________.18.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.三、解答题(共66分)19.(10分)如图,平行四边形的对角线交于点,分别过点作,连接交于点.(1)求证:;(2)当等于多少度时,四边形为菱形?请说明理由.20.(6分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若,点在、内部,,,求的度数.(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.(3)如图3,写出、、、之间的数量关系?(不需证明)(4)如图4,求出的度数.21.(6分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?22.(8分)如图1,点为正方形的边上一点,,且,连接,过点作垂直于的延长线于点.(1)求的度数;(2)如图2,连接交于,交于,试证明:.23.(8分)已知:如图,比长,的垂直平分线交于点,交于点,的周长是,求和的长.24.(8分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.25.(10分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).26.(10分)知识背景我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题问题初探如图(1),△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连接AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连接BE,猜想BE和CD有怎样的数量关系,并说明理由.类比再探如图(2),△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连接BE,则∠EBD=.(直接写出答案,不写过程,但要求作出辅助线)方法迁移如图(3),△ABC是等边三角形,点D是BC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BD、BE、BC之间有怎样的数量关系?(直接写出答案,不写过程).拓展创新如图(4),△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2、B【分析】根据等腰三角形的性质以及平行线的性质得出以及,得出进而得出答案.【详解】解:∵是等边三角形,∴∵∠O=30°,∴,∵,∴,∴在中,∵∴,同法可得∴的边长为:,故选:B.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出,得出进而发现规律是解题关键.3、B【分析】设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
∴∠B+19°=x+14°,
∴∠B=x-5°,
∵AB=AC,
∴∠C=∠B=x-5°,
∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
∵AD=DE,
∴∠DEA=∠DAE=x+9°,
在△ADE中,由三角形内角和定理可得
x+x+9°+x+9°=180°,
解得x=54°,即∠ADE=54°,
∴∠DAE=63°
故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.4、C【分析】由已知,,故只需添加一组角相等或者BC=EF即可.【详解】解:A:添加,则可用AAS证明;B:添加,则可用ASA证明;C:添加,不能判定全等;D:添加,则,即BC=EF,满足SAS,可证明.故选C.【点睛】本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS不能判定全等.5、C【分析】根据全等三角形的对应边相等和全等三角形的对应角相等,可得第二个三角形没有标注的边为a,且a和c的夹角为70°,利用三角形的内角和定理即可求出∠1.【详解】解:∵两个三角形全等,∴第二个三角形没有标注的边为a,且a和c的夹角为70°∴∠1=180°-70°-50°=60°故选C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等和全等三角形的对应角相等是解决此题的关键.6、D【解析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.【点睛】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.7、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【点睛】本题主要考查你对三角形全等的判定等考点的理解.8、A【分析】把x换成4x,y换成4y,利用分式的基本性质进行计算,判断即可.【详解】,∴把分式中的x,y都扩大4倍,则分式的值不变.故选:A.【点睛】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.9、B【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【详解】解:A、锐角三角形的三条高交于一点,说法正确,故本选项不符合题意;
B、直角三角形有三条高,说法错误,故本选项符合题意;
C、三角形三条高的交点不一定在三角形内,说法正确,故本选项不符合题意;
D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;
故选:B.【点睛】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.10、C【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(每小题3分,共24分)11、【分析】首先表示“的3倍与2的差”为,再表示“不小于1”为即可得到答案.【详解】根据题意,用不等式表示为故答案是:【点睛】本题考查了列不等式,正确理解题意是解题的关键.12、【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.13、15°或60°.【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.14、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根据题意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.15、()2018【解析】首先根据△ABC是腰长为1的等腰直角三形,求出△ABC的斜边长是,然后根据以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,求出第2个等腰直角三角形的斜边长是多少;再根据以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,求出第3个等腰直角三角形的斜边长是多少,推出第2017个等腰直角三角形的斜边长是多少即可.【详解】解:∵△ABC是腰长为1的等腰直角三形,
∴△ABC的斜边长是,第2个等腰直角三角形的斜边长是:×=()2,第3个等腰直角三角形的斜边长是:()2×=()3,…,
∴第2012个等腰直角三角形的斜边长是()2018.故答案为()2018.【点睛】本题考查勾股定理和等腰三角形的特征和应用,解题关键是要熟练掌握勾股定理,注意观察总结出规律.16、1【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【详解】∵DE是AB的垂直平分线,
∴DA=DB,
∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=6+4=1,
故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、【解析】用360°除以每一个外角的度数求出边数即可【详解】360°÷120°=3故答案为3【点睛】此题考查多边形的内角与外角,难度不大18、1【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;∴(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),
∴第三项系数为1+2+3+…+7=1,
故答案为:1.【点睛】本题考查数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.三、解答题(共66分)19、(1)见解析;(2)当满足时,四边形为菱形,证明详见解析【分析】(1)证明四边形OCFD是平行四边形,得出OD=CF,证出OB=CF,再证明全等即可(2)证出四边形ABCD是矩形,由矩形的性质得出OC=OD,即可得出四边形OCFD为菱形.【详解】(1)证明:∵,∴四边形是平行四边形,,∴,∵四边形是平行四边形,∴,∴,在和中,,∴.(2)当满足时,四边形为菱形.理由如下:∵,四边形是平行四边形,∴四边形是矩形∴∴,∴四边形为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.20、(1)80°;(2)∠B=∠D+∠BPD,证明见解析;(3)∠BPD=∠B+∠D+BQD;;(4)360°.【分析】(1)过P作平行于AB的直线,根据内错角相等可得出三个角的关系,然后将∠B=50°,∠D=30°代入,即可求∠BPD的度数;(2)先由平行线的性质得到∠B=∠BOD,然后根据∠BOD是三角形OPD的一个外角,由此可得出三个角的关系;(3)延长BP交QD于M,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(4)根据三角形外角性质得出∠CMN=∠A+∠E,∠DNB=∠B+∠F,代入∠C+∠D+CMN+∠DNM=360°即可求出答案.【详解】(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO=∠B,∠OPD=∠D,∵∠BPD=∠BPO+∠OPD,∴∠BPD=∠B+∠D.∵∠B=50°,∠D=30°,∴∠BPD=∠B+∠D=50°+30°=80°;(2)∠B=∠D+∠BPD,∵AB∥CD,∴∠B=∠BOD,∵∠BOD=∠D+∠BPD,∴∠B=∠D+∠BPD;(3)如图:延长BP交QD于M在△QBM中:∠BMD=∠BQD+∠QBM在△PMD中:∠BPD=∠BMD+∠D=∠BQD+∠QBM+∠D故答案为:∠BPD=∠B+∠D+BQD∴、、、之间的数量关系为:∠BPD=∠B+∠D+BQD(4)如图∵∠CMN=∠A+∠E,∠DNB=∠B+∠F,又∵∠C+∠D+∠CMN+∠DNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.21、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.【分析】(1)设装运甲种家电的汽车有x辆,装运乙种家电的汽车有y辆,根据用8辆汽车装运甲、乙两种家电共190台即可求得x、y的值;
(2)根据总利润=甲种家电的利润+乙种家电的利润,列出算式计算即可求解.【详解】解:(1)设装运甲种家电的汽车有x辆,装运乙种家电的汽车有y辆,依题意有,解得.故装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)20×5×180+30×3×300=45000(元).答:该公司售完这190台家电后的总利润是45000元.【点睛】本题考查二元一次方程组的应用,利润的计算,本题中解关于x、y的方程组是解题关键.22、(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC≌△FNE(AAS)即可解决问题;(2)过点F作FG∥AB交BD于点G.首先证明四边形ABGF为平行四边形,再证明△FGM≌△DMC(AAS)即可解决问题;【详解】(1)解:∵四边形是正方形,∴,∴,,∴,∵,∴≌∴,,∵∴∴∴,∴,∵,∴,∴(2)证明:过点作交于点.由(1)可知,∵∴,∴,∵,∴四边形为平行四边形,∴,,∵,∴,∵,∴,∴,∵∴≌∴,∴,∴.【点睛】本题考查全等三角形的判定和性质、正方形的性质、平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23、AB=8cm,AC=6cm【分析】根据线段垂直平分线性质求出BD=DC,根据三角形周长求出AB+AC=12cm,根据已知得出AC=AB-2cm,即可求出答案.【详解】解:∵BC的垂直平分线交AB于点D,交BC于点E,
∴BD=DC,
∵△ACD的周长是14cm,
∴AD+DC+AC=14cm,
∴AD+BD+AC=AB+AC=14cm,
∵AB比AC长2cm,
∴AC=AB-2cm,
∴AC=6cm,AB=8cm.【点睛】本题考查了解二元一次方程组,线段垂直平分线性质的应用,能得出关于AB、AC的方程是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24、(1)见解析,A′(-2,4),B′(3,-2),C′(-3,1);(2)【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【详解】解:(1)如图,A′(-2,4),B′(3,-2),C′(-3,1);(2)S△ABC=6×6-×5×6-×6×3-×1×3,=36-15-9-,=.【点睛】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.25、(1)12x3y2;(2)a2+3ab.【分析】(1)根据分式的乘除法以及积的乘方的运算法则计算即可.
(2)应用完全平方公式,以及单项式乘多项式的方法计算即可.【详解】(1)•(6x2y)2;=•(36x4y2)=12x3y2;(2)(a+b)2+b(a﹣b)=a2+2ab+b2+ab﹣b2=a2+3ab.【点睛】本题主要考查了分式的乘除,单项式乘多项式以及完全平方公式的应用,要熟练掌握.26、问题初探:BE=CD,理由见解析;类比再探:∠EBD=90°,辅助线见解析;方法迁移:BC=BD+BE;拓展创新:∠EBD=120°,理由见解析【分析】问题初
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度教育培训场地短期租赁合同
- 二零二五年度宾馆房间租赁合同及餐饮服务合作框架协议3篇
- 二零二五年度建筑物拆除工程拆除物堆放与处理合同3篇
- 2025年度绿色交通系统设计与实施合同2篇
- 感恩照亮青春砥砺前行路
- 二零二五年度房地产众筹分销代理合作协议3篇
- 二零二五年度地产公司工程合同履约质量监督与整改协议3篇
- 二零二五年度城市住宅产权分割与继承协议书3篇
- 二零二五年度寄售交易服务协议:珠宝鉴定寄售合作2篇
- 二零二五年度家庭维修保养服务合同9篇
- 滞销风险管理制度内容
- 关于物业服务意识的培训
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- 排污许可证办理合同1(2025年)
- GB/T 44890-2024行政许可工作规范
- 上海科目一考试题库参考资料1500题-上海市地方题库-0
- 【7地XJ期末】安徽省宣城市宁国市2023-2024学年七年级上学期期末考试地理试题(含解析)
- 设备操作、保养和维修规定(4篇)
- 2025年度日历台历黄历模板
- 医疗行业十四五规划
- 施工临建布置方案
评论
0/150
提交评论