2024年高考数学模拟试题三含解析_第1页
2024年高考数学模拟试题三含解析_第2页
2024年高考数学模拟试题三含解析_第3页
2024年高考数学模拟试题三含解析_第4页
2024年高考数学模拟试题三含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年高考数学模拟试题一、单项选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,若,则()A. B. C. D.【答案】C【解析】【分析】由,求出,,由此能求出.【详解】集合,,,,,,,,,,,,1,.故选:.【点睛】本题考查并集的求法,考查交集、并集定义等基础学问,考查运算求解实力,属于简洁题.2.若实数,则()A. B. C. D.【答案】D【解析】【分析】依据对数的单调性可知,并且、都大于0,A选项不成立;当、都是负数的时候,肯定值符号是相反的,可推断B错误;举反例,的时候选项C就不成立了;依据指数函数的单调性可推断选项D中成立.【详解】.对数函数的底数是在0到1之间,所以是减函数,因此,并且要保证真数,因此不成立;.取,,明显不成立;.当时,式子不成立;.指数函数的底数大于1,所以是增函数,即有,因此成立;故选:.【点睛】本题考查了不等式的基本性质,结合了对数函数、指数函数的单调性,考查学生的逻辑推理实力,属于中档题.3.设随机变量,若,则()A., B.,C., D.,【答案】A【解析】【分析】依据正态分布及可知期望与方差.【详解】因为随机变量,且,所以由对称性知,由正态分布知方差.故选:A【点睛】本题主要考查了正态分布中,的含义,属于简洁题.4.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】【分析】解出不等式依据充分条件和必要条件定义分别进行推断即可.【详解】由题解,解得:,解可得:;则不能推出成立,能推出成立,所以“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的推断,依据充分条件和必要条件的定义是解决本题的关键,属于基础题.5.设,,若,,,则实数,,的大小关系是()A. B.C. D.【答案】C【解析】【分析】利用指数函数、对数函数的性质干脆求解.【详解】,,,,,,,,实数,,的大小关系为.故选:.【点睛】本题考查三个数的大小的推断,考查指数函数、对数函数的性质等基础学问,考查运算求解实力,属于中档题.6.设、为两个不同的平面,、为两条不同的直线,且,,则下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则【答案】A【解析】【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理推断选项的正误即可.【详解】由,为两个不同的平面,、为两条不同的直线,且,,知:在中,,则,满意平面与平面垂直的判定定理,所以正确;在中,若,不能得到,也不能得到,所以得不到,故错误;在中,若,则与可能相交、平行或异面,故不正确;在中,若,则由面面平行的性质定理得,不肯定有,也可能异面,故错误.故选:.【点睛】本题考查命题真假的推断,考查空间中线线、线面、面面间的位置关系等基础学问,考查运算求解实力,是中档题.7.函数的图象大致为()A. B.C. D.【答案】D【解析】【分析】先确定函数的定义域,再推断函数的奇偶性和值域,由此确定正确选项。【详解】解:函数的定义域为,,则函数为偶函数,图象关于y轴对称,解除B,当时,,解除A,当时,,解除C,故选:D.【点睛】本题通过推断函数图像考查函数的基本性质,属于基础题。8.已知一组数据点,,,…,,用最小二乘法得到其线性回来方程为,若数据,,,…的平均数为1,则()A.2 B.11 C.12 D.14【答案】D【解析】【分析】依据在回来直线上,代入求,再求.【详解】∵,且在线性回来直线上,∴,则.故选:D.【点睛】本题考查回来直线方程的应用,意在考查基础学问,本题的关键是知道回来直线必过样本中心点.9.用平面截一个球,所得的截面面积为,若到该球球心的距离为1,则球的体积为()A. B. C. D.【答案】B【解析】【分析】求出小圆的半径,利用球心到该截面的距离为1,小圆的半径,通过勾股定理求出球的半径,即可求出球的体积.【详解】用一平面去截球所得截面的面积为,则截面圆的半径为1,已知球心到该截面的距离为1,则球的半径为,球的体积为:.故选:.【点睛】本题考查球的小圆的半径,球心到该截面的距离,球的半径之间的关系,考查计算实力,是中档题.10.在,,,四个函数中,当时,使恒成立的函数的个数是()A.0 B.1 C.2 D.3【答案】B【解析】【分析】依据条件结合凸凹函数的定义进行推断即可.【详解】满意为凸函数,分别作出四个函数在上的图象,由图象知,在四个函数中,只有是凸函数,其余三个为凹函数,故选:.【点睛】本题主要考查函数图象的推断,结合凸凹函数的定义,利用数形结合是解决本题的关键,属于中档题.二、多项选择题:本大题共3小题,每小题4分,共12分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得4分,有选错的得0分,部分选对的得2分.11.某地某所中学2024年的高考考生人数是2024年高考考生人数的1.5倍,为了更好地对比该校考生的升学状况,统计了该校2024年和2024年的高考升学状况,得到如下柱图:则下列结论正确的是()A.与2024年相比,2024年一本达线人数有所增加B.与2024年相比,2024年二本达线人数增加了0.5倍C.与2024年相比,2024年艺体达线人数相同D.与2024年相比,2024年不上线的人数有所增加【答案】AD【解析】【分析】依据柱状图给定的信息,作差比较,即可求解.【详解】依题意,设2024年高考考生人数为,则2024年高考考生人数为,由,所以A项正确;由,所以B项不正确;由,所以C项不正确;由,所以D项正确.故选:AD.【点睛】本题主要考查了统计图表的识别和应用,其中解答中熟记柱状图表表示的含义是解答的关键,属于基础题.12.已知空间中两条直线,所成的角为,为空间中给定的一个定点,直线过点且与直线和直线所成的角都是,则下列选项正确的是()A.当时,满意题意的直线不存在B.当时,满意题意的直线有且仅有1条C.当时,满意题意的直线有且仅有2条D.当时,满意题意的直线有且仅有3条【答案】ABC【解析】【分析】为了探讨:过点与、所成的角都是的直线有且仅有几条,先将涉及到的线放置在同一个平面内视察,只须考虑过点与直线、所成的角都是的直线有且仅有几条即可,再利用.进行角之间的大小比较即得.【详解】过点作,,则相交直线、确定一平面.与夹角为或,设直线与、均为角,作面于点,于点,于点,记,或,则有.因为,所以.当时,由,得;当时,由,得.故当时,直线不存在;当时,直线有且仅有1条;当时,直线有且仅有2条;当时,直线有且仅有3条;当时,直线有且仅有4条;当时,直线有且仅有1条.故,,均正确,错误.故选:.【点睛】本题考查线面角大小的推断,处理技巧上,将直线转化成共面直线特别关键,考查了数形结合,分类探讨的数学思想,属于中档题13.德国闻名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其名命名的函数成为狄利克雷函数,则关于,下列说法正确的是()A.B.函数是偶函数C.随意一个非零有理数,对随意恒成立D.存在三个点,使得为等边三角形【答案】ABCD【解析】【分析】依次推断每个选项:,故;推断,为偶函数;推断;取为等边三角形,得到答案.【详解】,正确;,偶函数,正确;,正确;易知三点构成等边三角形,正确;故选:【点睛】本题考查了函数的新定义问题,意在考查学生对于函数性质的应用实力.三、填空题:本大题共4小题,每小题4分,共16分.把答案填在对应题号的横线上14.命题:“,”的否定是______.【答案】,【解析】【分析】依据含有量词的命题的否定即可得到结论.【详解】命题为全称命题,则命题的否定为,故答案为:.【点睛】本题主要考查含有量词的命题的否定,属于简洁题.15.已知为偶函数,当时,,则曲线在点处的切线方程是______.【答案】【解析】【分析】由已知求得函数在上的解析式,求其导函数,得到(1),再由直线方程点斜式得答案.【详解】为偶函数,且当时,,当时,,则,,(1).曲线在点处的切线方程是,即.故答案为:.点睛】本题考查函数解析式的求解及常用方法,利用导数探讨在曲线上某点处的切线方程,是中档题.16.甲、乙、丙、丁、戊5名同学参与“庆国庆70周年,爱国主义学问大赛”活动,决出第1名到第5名的名次.甲乙两名同学去询问成果,回答者对甲说“虽然你的成果比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从以上回答分析,丙是第一名的概率是_____.【答案】【解析】【分析】依据提示可知丙、丁、戊获得第一名的概率时一样的,故可求其概率.【详解】∵甲和乙都不行能是第一名,∴第一名只可能丙、丁或戊,又考虑到全部的限制条件对丙、丁、戊都没有影响,∴这三个人获得第一名是等概率事务,∴丙是第一名的概率是.故答案为:.【点睛】本题考查推理和概率的求法,意在考查推理,抽象概括实力,属于简洁题型.17.在棱长为6的正方体中,是的中点,点是面所在的平面内的动点,且满意,则_______,三棱锥的体积最大值是_______.【答案】(1).2(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论