版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市郸城县重点达标名校2023-2024学年中考数学对点突破模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm2.下列分式是最简分式的是()A. B. C. D.3.下列运算正确的是()A.﹣3a+a=﹣4a B.3x2•2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x44.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形5.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是()A. B. C. D.6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.7.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°8.计算(1-)÷的结果是()A.x-1 B. C. D.9.下列命题正确的是()A.内错角相等B.-1是无理数C.1的立方根是±1D.两角及一边对应相等的两个三角形全等10.图为一根圆柱形的空心钢管,它的主视图是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.12.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.13.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.14.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.15.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.16.在实数范围内分解因式:x2y﹣2y=_____.三、解答题(共8题,共72分)17.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.18.(8分)解不等式组并写出它的所有整数解.19.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.20.(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,,,中,抛物线的关联点是_____;(2)如图2,在矩形ABCD中,点,点,①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.21.(8分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.22.(10分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.23.(12分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质2、C【解析】解:A.,故本选项错误;B.,故本选项错误;C.,不能约分,故本选项正确;D.,故本选项错误.故选C.点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.3、D【解析】
根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A.﹣3a+a=﹣2a,故不正确;B.3x2•2x=6x3,故不正确;C.4a2﹣5a2=-a2,故不正确;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.4、C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.5、B【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.【详解】解,连结OB,∵、是的切线,∴,,则,∵四边形APBO的内角和为360°,即,∴,又∵,,∴,∵,∴,∵,∴,故选:B.【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.6、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.7、A【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A=50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.8、B【解析】
先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(-)÷=•=,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.9、D【解析】解:A.两直线平行,内错角相等,故A错误;B.-1是有理数,故B错误;C.1的立方根是1,故C错误;D.两角及一边对应相等的两个三角形全等,正确.故选D.10、B【解析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
如图作DH⊥AE于H,连接CG.设DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四边形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC与△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案为4.12、【解析】
试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相反数.13、71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.14、1.【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.15、3:2;【解析】
由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x,∵△AFG与△BFD相似∴AG=3y,BD=5y
由题意BC:CD=3:2则CD=2y
∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.16、y(x+)(x﹣)【解析】
先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为y(x+)(x-).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.三、解答题(共8题,共72分)17、(1);(2)点P的坐标是(0,4)或(0,-4).【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2.将y=2代入3得:x=2,∴M(2,2).把M的坐标代入得:k=4,∴反比例函数的解析式是;(2).∵△OPM的面积与四边形BMON的面积相等,∴.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).18、不等式组的整数解有﹣1、0、1.【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.19、(1)OE=;(2)阴影部分的面积为【解析】
(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt△COE与Rt△AFE中,,∴△COE≌△AFE,∴阴影部分的面积=扇形FOC的面积,∵S扇形FOC==π.∴阴影部分的面积为π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.20、(1)(2)①②【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;②由①知,分两种情况画出图形进行讨论即可得.【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)①当时,,,,,此时矩形上的所有点都在抛物线的下方,∴,∴,∵,∴;②由①,,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF==4,解得t=,故答案为【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.21、(1)y=﹣x2+2x+1;(2)当△MAC是直角三角形时,点M的坐标为(1,)或(1,﹣).【解析】
(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标.【详解】(1)将A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,设点M的坐标为(1,m),则CM=,AC==,AM=.分两种情况考虑:①当∠ACM=90°时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会员制社交电商建立长期稳定的客户关系考核试卷
- 发动机的参数辨识和系统辨识方法考核试卷
- 创业空间的行业协会与交流平台考核试卷
- 电力设备的冷却与散热控制考核试卷
- DB11T 594.3-2013 地下管线非开挖铺设工程施工及验收技术规程 第3部分:夯管施工
- DB11∕T 1824-2021 森林消防综合应急救援队伍装备使用和维护规范
- can i课件教学课件
- 中位数课件教学课件
- 2024年高考语文二轮复习:信息类阅读综合测试(解析版)
- 节日课文课件教学课件
- 五年级主题班会 家长会 课件(共28张PPT)
- 课件4.2 氯化工艺安全
- 中学生学习策略量表(LASSI)
- 活性炭吸附装置安全操作保养规程
- 绳索救援演示教学课件
- 电力调查的报告
- 《国有企业招投标及采购管理办法》
- 充电桩工程施工方法及施工方案
- 四川建筑施工资料表格(施工单位用表)全套
- 道路货物运输企业安全风险评估手册
- 人教版小学语文四年级下册1-8单元试题(含期中期末各3套)
评论
0/150
提交评论