宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷含解析_第1页
宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷含解析_第2页
宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷含解析_第3页
宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷含解析_第4页
宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宜兴外国语学校2025年初三模拟考试(一)数学试题理试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD2.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.63.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=1213.反比例函数y=kx在第一象限图象经过点A,与BC交于点F.S△AOF=A.15 B.13 C.12 D.54.下列运算正确的是()A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5 D.a12÷a8=a45.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC6.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣57.下列算式中,结果等于a5的是()A.a2+a3 B.a2•a3 C.a5÷a D.(a2)38.下列运算正确的是()A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a9.计算-3-1的结果是()A.2B.-2C.4D.-410.计算-5x2-3x2的结果是()A.2x2 B.3x2 C.-8x2 D.8x211.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,求证:∽.证明:又,,,,∽.A. B. C. D.12.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).14.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.15.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.16.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.17.函数y=中,自变量x的取值范围为_____.18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是

________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面积.20.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?21.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)解不等式组:,并把解集在数轴上表示出来。23.(8分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;(2)如图2所示,当α=45°时,求证:=;(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.24.(10分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.25.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.26.(12分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).27.(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

∵∠ACD对的弧是,对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.2、B【解析】

利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.本题主要考查了多边形的外角和定理.是需要识记的内容.3、A【解析】

过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA•sin∠AOB=1213a,OM=5∴点A的坐标为(513a,12∵四边形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵点A在反比例函数y=kx∴k=52故选A.【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=12S菱形OBCA4、D【解析】

各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5、D【解析】

解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.6、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000025=2.5×10﹣6;故选B.本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.8、B【解析】

先根据同底数幂的乘法法则进行运算即可。【详解】A.;故本选项错误;B.﹣3a2•4a3=﹣12a5;故本选项正确;C.;故本选项错误;D.不是同类项不能合并;故本选项错误;故选B.先根据同底数幂的乘法法则,幂的乘方,积的乘方,合并同类项分别求出每个式子的值,再判断即可.9、D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.10、C【解析】

利用合并同类项法则直接合并得出即可.【详解】解:故选C.此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.11、B【解析】

根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,,又,,∽.故选B.本题考查了相似三角形的判定与性质;关键是证明三角形相似.12、A【解析】试题解析:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,故选A.点睛:角平分线上的点到角两边的距离相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、174cm1.【解析】直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.点睛:利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.14、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且15、1【解析】

解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.本题考查正多边形和圆;扇形面积的计算.16、【解析】

根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.17、x≠1.【解析】

该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】根据题意得:x−1≠0,解得:x≠1.故答案为x≠1.本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.18、2【解析】试题解析:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:22+5考点:概率公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明详见解析;(2)证明详见解析;(3)1.【解析】

(1)利用平行线的性质及中点的定义,可利用AAS证得结论;

(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;

(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中点,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.

∵AD为BC边上的中线

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四边形ADCF是平行四边形,

∵∠BAC=90°,D是BC的中点,E是AD的中点,

∴AD=DC=BC,

∴四边形ADCF是菱形;

(3)连接DF,

∵AF∥BD,AF=BD,

∴四边形ABDF是平行四边形,

∴DF=AB=5,

∵四边形ADCF是菱形,

∴S菱形ADCF=AC▪DF=×4×5=1.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.20、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;【解析】

(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.【详解】(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,故甲5时完成的工作量是1.(2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0≤t≤2时,可得y乙=20t;当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).综上可得:y甲=30t(0≤t≤5);y乙=.(3)由题意得:,解得:t=,故改进后﹣2=小时后乙与甲完成的工作量相等.本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.21、(1)150,(2)36°,(3)1.【解析】

(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22、,解集在数轴上表示见解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.试题解析:由①得:由②得:∴不等式组的解集为:解集在数轴上表示为:23、1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四边形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.(3)解:如图3中,设AC与DE交于点O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.24、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.25、(1)证明见解析;(2)证明见解析;(3)CE=.【解析】

(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.【详解】解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案为(1)证明见解析;(2)证明见解析;(3)CE=.本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.26、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如图①,当OB∥AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论