




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市红桥区普通中学2025届初三数学试题第二学期数学试题周练(二)含附加题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.一个多边形的每个内角均为120°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折C.8折 D.9折3.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.4.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=()A.6 B. C.12﹣π D.12﹣π5.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣ B. C.﹣5 D.56.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万D.前年年收入不止①②③三种农作物的收入7.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.48.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.169.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55° B.60° C.65° D.70°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得到△A1B1O,则翻滚2017次后AB中点M经过的路径长为______.12.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.13.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k=.14.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.15.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.16.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.三、解答题(共8题,共72分)17.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.18.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)19.(8分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.20.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?21.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-aS四边形ADCB=S四边形ADCB=∴化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c222.(10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线;(2)⊙O的半径为5,tanA=,求FD的长.23.(12分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.24.一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.2、B【解析】
设可打x折,则有1200×-800≥800×5%,解得x≥1.即最多打1折.故选B.本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3、B【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4、D【解析】
根据题意可得到CE=2,然后根据S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:∵BC=4,E为BC的中点,∴CE=2,∴S1﹣S2=3×4﹣,故选D.此题考查扇形面积的计算,矩形的性质及面积的计算.5、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(﹣2)•===a-b,当a-b=5时,原式=5,故选D.6、C【解析】
A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;C、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误,故选C.本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.7、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图8、D【解析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.9、C【解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.故此题选C.10、C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、(+896)π.【解析】
由圆弧的弧长公式及正△ABO翻滚的周期性可得出答案.【详解】解:如图作⊥x轴于E,易知OE=5,,,观察图象可知3三次一个循环,一个循环点M的运动路径为==,翻滚2017次后AB中点M经过的路径长为,故答案:本题主要考查圆弧的弧长公式及三角形翻滚的周期性,熟悉并灵活运用各知识是解题的关键.12、3或6【解析】
分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.【详解】设AC和BE相交于点O.当P在OA上时,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴BD=AB=9,OB=OD=BD=.则AO=.在直角△OBP中,OP=.则AP=OA-OP-;当P在OC上时,AP=OA+OP=.故答案是:3或6.本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.13、-4.【解析】
过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.14、3【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.15、12.【解析】
设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,∵点D在反比例函数y=的图象上,∴D(a,),∴OA=,过点E作EN⊥OC于点N,交AB于点M,则OA=MN=,∵△OEC的面积为12,OC=2a,∴EN=,∴EM=MN-EN=-=;设ON=x,则NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵点E在在反比例函数y=的图象上,∴·=k,解得k=,∵k>0,∴k=12.故答案为:12.本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.16、12【解析】
根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.【详解】解:作B′C⊥y轴于点C,如图所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵点A(0,6),∴B′C=6,设点B′的坐标为(6,),∵点M是线段AB'的中点,点A(0,6),∴点M的坐标为(3,),∵反比例函数y=(k≠0)的图象恰好经过点M,∴=,解得,k=12,故答案为:12.本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(共8题,共72分)17、(1)证明见解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.【详解】(1)过C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.∵CF⊥AB,∴AB为⊙C的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.18、这棵树CD的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用19、(x﹣y)2;2.【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.20、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】
(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a万件,依题意有:900a+600(8﹣a)≥5400,解得:a≥1.答:至少销售甲种商品1万件.本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.21、见解析.【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.22、(1)证明见解析(2)【解析】
(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG•FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.本题考查了垂径定理,等腰三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转变思维监理师试题及答案
- 计算机三级嵌入式考试的知识点总结试题及答案
- 珠宝首饰设计及定制合作合同
- 嵌入式设备的效率优化试题及答案
- 现代农业园区租赁经营合同书
- 机械工程CAD应用技术试题
- 全面掌控的2025年行政组织理论考试试题及答案
- 行政组织环境适应性的试题及答案
- 公路工程施工工艺细节的掌握与应用试题及答案
- 附合同安全协议书范本
- 九宫数独200题(附答案全)
- 江西省宜春市袁州区2023-2024学年六年级下学期期末考试语文试卷
- A型肉毒素注射美容记录
- 01467-土木工程力学(本)-国开机考参考资料
- 电力智能巡检系统方案
- 灯谜文化智慧树知到期末考试答案2024年
- 物流责任保险大纲
- 《汽车安全驾驶技术》夜间驾驶
- 《植物学》:茎课件
- 产妇入户访视培训课件
- 风湿免疫疾病的心理咨询和心理疗法
评论
0/150
提交评论