吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题含解析_第1页
吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题含解析_第2页
吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题含解析_第3页
吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题含解析_第4页
吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市第157中学2025届八年级数学第一学期期末考试模拟试题模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列各式中,属于同类二次根式的是()A.与 B.与 C.与 D.与2.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地,下列函数图象(图中v表示骑车速度,s表示小刚距出发地的距离,t表示出发时间)能表达这一过程的是()A. B. C. D.3.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙 B.甲和丙 C.乙和丙 D.只有乙4.-9的立方根为()A.3 B.-3 C.3或-3 D.5.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2 B.3 C.4 D.56.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有()个①众数是8;②中位数是8;③平均数是8;④方差是1.1.A.1 B.2 C.3 D.47.丽丽同学在参加演讲比赛时,七位评委的评分如下表:她得分的众数是()评委代号评分A.分 B.分 C.分 D.分8.有理数的算术平方根是()A. B. C. D.9.如图,,平分,如果射线上的点满足是等腰三角形,那么的度数不可能为()A.120° B.75° C.60° D.30°10.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在直线上,与的角平分线交于点,则_____;若再作的平分线,交于点;再作的平分线,交于点;依此类推,_________.12.若关于x的分式方程有正数解,则m的取值范围是______________.13.在等腰中,若,则__________度.14.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。15.如果一次函数y=x﹣3的图象与y轴交于点A,那么点A的坐标是_____.16.三角形两边的中垂线的交点到三个顶点的距离的大小关系是_____.17.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=_____.18.如图,已知,要使,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)三、解答题(共66分)19.(10分)(1)化简(2)解方程(3)分解因式20.(6分)某校组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的球类运动进行了统计,并绘制如图1、图2所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类比赛提出合理化建议.21.(6分)先化简,再求值:,其中,满足.22.(8分)如图,在与中,点,,,在同一直线上,已知,,,求证:.23.(8分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.24.(8分)甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式;(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?25.(10分)如图,已知,为线段上一点,为线段上一点,,设,.①如果,那么_______,_________;②求之间的关系式.26.(10分)如图,由6个长为2,宽为1的小矩形组成的大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的几何图形称为格点图形(如:连接2个格点,得到一条格点线段;连接3个格点,得到一个格点三角形;…),请按要求作图(标出所画图形的顶点字母).(1)画出4种不同于示例的平行格点线段;(2)画出4种不同的成轴对称的格点三角形,并标出其对称轴所在线段;(3)画出1个格点正方形,并简要证明.

参考答案一、选择题(每小题3分,共30分)1、C【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、与的被开方数相同,所以它们是同类二次根式;故本选项正确;D、是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2、C【解析】根据小刚以400米/分的速度匀速骑车5分,可知路程随时间匀速增加;再根据原地休息,可知其路程不变;然后加速返回,其与出发点的距离随时间逐渐减少,据此分析可得到答案.【详解】解:由题意得,以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,与出发点的距离逐渐减少.故选C.【点睛】本题是一道有关函数的实际应用题,考查的是函数的表示方法-图象法.3、B【分析】根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;

乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;

丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;

所以与△ABC全等的有甲和丙,

故选:B.【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.4、D【分析】根据立方根的定义进行计算即可得解.【详解】-9的立方根是.故选:D.【点睛】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.5、A【解析】试题分析:根据三角形全等可以得出BD=AC=7,则DE=BD-BE=7-5=2.6、B【分析】分别求出射击运动员的众数、中位数、平均数和方差,然后进行判断,即可得到答案.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故①正确;10次成绩排序后为:1,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故②正确;平均数为(1+7×2+8×3+9×2+10×2)=8.2,故③不正确;方差为[(1﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.51,故④不正确;不正确的有2个,故选:B.【点睛】本题考查了求方差,求平均数,求众数,求中位数,解题的关键是熟练掌握公式和定义进行解题.7、B【分析】一组数据中出现次数最多的数据叫做众数.【详解】这组数据出现次数最多的是1,故这组数据的众数是1.故选:B.【点睛】本题考查了众数的定义,解题时牢记定义是关键.8、C【解析】直接利用算术平方根的定义得出答案.【详解】81的算术平方根是:.

故选:C.【点睛】本题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.9、C【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC是度数即可得到答案.【详解】∵,平分,∠AOC=30,当OC=CE时,∠OEC=∠AOC=30,当OE=CE时,∠OEC=180120,当OC=OE时,∠OEC=(180)=75,∴∠OEC的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.10、A【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,是中心对称图形,故本选项符合题意;

B、是轴对称图形,不是中心对称图形,故本选项不符合题意;

C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

D、不是轴对称图形,是中心对称图形,故本选项不符合题意.

故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、()()【分析】根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A1=∠A1CE-∠A1BC=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A=.

依此类推∠A2=,∠A3=,…,∠A10=.故答案为:;.【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.12、且【分析】分式方程去分母转化为整式方程,由分式方程有正数解,即可确定出m的范围.【详解】解:去分母得:x-3(x-1)=m,解得:x=,∵分式方程有一正数解,∴>0,且≠1,解得:m<6且m≠1,故答案为:m<6且m≠1.【点睛】此题考查了分式方程的解,始终注意分母不为0这个条件.13、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.14、【解析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15、(0,﹣3)【分析】代入x=0求出与之对应的y值,进而可得出点A的坐标.【详解】解:当x=0时,y=x﹣3=﹣3,∴点A的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题关键.16、相等【分析】根据线段垂直平分线的性质得出AP=BP,AP=CP,即可得出答案.【详解】解:相等,理由是:∵P是线段AB和线段AC的垂直平分线的交点,∴AP=BP,AP=CP,∴AP=BP=CP,即三角形两边的中垂线的交点到三个顶点的距离的大小关系是相等,故答案为:相等.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.17、1【分析】令求出的值,再令即可求出所求式子的值.【详解】解:令,得:,令,得:,则,故答案为:1.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18、可添∠ABD=∠CBD或AD=CD.【分析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.三、解答题(共66分)19、(1);(2)无解;(3)【分析】(1)直接根据分式知识化简即可;(2)去分母然后解方程即可;(3)先提公因式,再根据完全平方因式分解即可.【详解】解:(1)====;(2)检验:把x=3代入得:x-3=0,则x=3为方程的增根,故原方程无解;(3)原式===.【点睛】本题是对计算的综合考查,熟练掌握分式化简,分式方程及因式分解是解决本题的关键.20、(1)本次调查的人数是50人,补图见解析;(2)该校最喜欢篮球运动的学生约390人;(3)由于喜欢羽毛球的人数最多,学校应组织一场羽毛球比赛.【分析】(1)利用篮球的人数与所占的百分比即可求出总数;然后利用总数求出羽毛球和其他的人数,即可补全条形统计图;(2)用1500乘喜欢篮球的人所占的百分比26%即可得出答案;(3)根据喜欢羽毛球的人数最多,可以建议学校组织羽毛球比赛.【详解】(1),本次调查的人数是50人,喜欢羽毛球的人数为:(人)喜欢其他的人数为(人)统计图如图:(2),该校最喜欢篮球运动的学生约390人.(3)由于喜欢羽毛球的人数最多,学校应组织一场羽毛球比赛.【点睛】本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图是解题的关键.21、,6【分析】根据整式的四则混合运算先化简代数式,再根据确定x和y的值,代入求值即可.【详解】解:=4x2-4xy+y2-4x2+y2+3xy-2y2=.∵∴,∴,∴原式=.【点睛】本题考查代数式的化简求值.熟练掌握整式的乘法、平方差公式、完全平方公式、绝对值及算术平方根的非负性是解题的关键.22、证明见解析【分析】先通过△ADF≌△CBE,证明AF=EC,再证明AE=CF.【详解】证明:,,在和中,(ASA),.【点睛】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.23、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如图1;②当MN∥OF时,如图2,利用特殊三角函数值求解即可.【详解】(1)A、B、C的坐标分别为:(0,3)、(3,0);OC=BC,则点C是AB的中点,则点C的坐标为:(,);故AC=AB=6=3;(2)点A、B、C的坐标分别为:(0,3)、(3,0)、(,);点D、E、G的坐标分别为:(﹣,0)、(﹣,4)、(2,1);i)设s、t的表达式为:s=kt+b,当t=DN=时,s=EM=EA=2,即点(,2);当t=OD=时,s=EG=6,即点(,6);将点(,2)和点(,6)代入s=kt+b并解得:函数的表达式为:y=t﹣2…①;ii)直线AB的倾斜角∠ABO=α=30°,EB=8,BD=4,DE=4,EM=s、DN=t,①当MN∥OC时,如图1,则∠MNB=∠COB=∠CBO=α=30°,MN=BM=BE﹣EM=8﹣s,NH=BN=(BD﹣DN)=(4﹣t),cos∠MNH==…②;联立①②并解得:s=;②当MN∥OF时,如图2,故点M作MG⊥ED角ED于点G,作NH⊥AG于点H,作AR⊥ED于点R,则∠HNM=∠RAE=∠EBD=α=30°,HN=GD=ED﹣EG=4﹣EMcos30°=4﹣s,MH=MG﹣GH=MEcos30°﹣t=s﹣t,tanα==…③;联立①③并解得:s=;从图象看MN不可能平行于BC;综上,s=或.【点睛】本题考查了直线解析式的动点问题,掌握直角三角形斜边中线定理、两点之间的距离公式、直线解析式的解法、平行线的性质、特殊三角函数值是解题的关键.24、(1);(2)甲仓库运往A地70吨,甲仓库运往B地30吨,乙仓库运往A地0吨,乙仓库运往B地80吨时,运费最低,最低总运费是37100元.【解析】试题分析:(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.试题解析:(1)设甲库运往A地水泥x吨,则甲库运往B地水泥(100−x)吨,乙库运往A地水泥(70−x)吨,乙库运往B地水泥[80−(70−x)]=(10+x)吨,根据题意得:y=12×20x+10×25(100−x)+12×15×(70−x)+8×20(10+x)=−30x+39200(0⩽x⩽70),∴总运费y(元)关于x(吨)的函数关系式为:y=−30x+3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论