版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市名校2025届数学八上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列计算,正确的是()A. B. C. D.2.下列变形正确的是()A. B. C. D.3.如图,在△ABC中,∠A=80°,边AB,AC的垂直平分线交于点O,则∠BCO的度数为()A.10° B.20° C.30° D.40°4.下列分式中,是最简分式的是().A. B. C. D.5.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.6.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.7.若实数满足,则的值为()A.2或 B. C. D.8.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=19.下列多项式中,不能用平方差公式分解的是()A. B.C. D.10.下面的图案中,不是轴对称图形的是()A. B.C. D.11.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.12.点在第二、四象限的平分线上,则的坐标为()A. B. C.(-2,2) D.二、填空题(每题4分,共24分)13.一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.14.若一次函数、的图象相交于,则关于x、y的方程组的解为______.15.如图,在中,,,点的坐标为,点的坐标为,点的坐标是__________.16.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.17.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.18.如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=_____.三、解答题(共78分)19.(8分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.20.(8分)如图,△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别于AB,AC交于点D,E,求∠BCD的度数.21.(8分)如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线yx+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线yx+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.22.(10分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.23.(10分)在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的;并写出的坐标;(2)是直角三角形吗?说明理由.24.(10分)如图是规格为的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为;(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是,的周长是(结果保留根号);(3)作出关于轴对称的.25.(12分)在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)26.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?
参考答案一、选择题(每题4分,共48分)1、B【解析】解:A.,故A错误;B.,正确;C.,故C错误;D.,故D错误.故选B.2、D【分析】根据分式的基本性质,等式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质和等式的基本性质,解题的关键是熟练掌握分式的基本性质进行解题.3、A【分析】连接OA、OB,根据三角形内角和定理求出∠ABC+∠ACB=100°,根据线段的垂直平分线的性质得到OA=OB,OA=OC,根据等腰三角形的性质计算即可.【详解】解:如图,连接OA,OB,∵∠BAC=80°,∴∠ABC+∠ACB=100°,∵点O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°-80°=20°,∵OB=OC,∴∠BCO=∠CBO=10°,故选:A.【点睛】此题考查垂直平分线的性质,解题关键在于利用三角形内角和的性质.4、D【详解】A选项:=不是最简分式;B选项:=,不是最简分式;C选项:==x-y,不是最简分式;D选项,是最简分式.故选D.点睛:判断一个分式是不是最简分式关键看分子、分母是否有公因式,如果分子分母是多项式,可以先分解因式,以便于判断是否有公因式,从而判断是否是最简分式.5、D【分析】平移不改变图形的形状和大小.根据原图形可知平移后的图形飞机头向上,即可解题.【详解】考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.【点睛】本题考查了图形的平移,牢固掌握平移的性质即可解题.6、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7、C【分析】先根据二次根式有意义的条件求出x的取值范围,然后根据题意可知和异号,但是根据二次根式和绝对值的非负性可得或,解出x的值,找到在取值范围内的即可.【详解】有意义∴∵∴或∴或∵∴故选:C.【点睛】本题主要考查绝对值和二次根式的非负性,二次根式有意义的条件,掌握二次根式有意义的条件,绝对值和二次根式的非负性是解题的关键.8、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),
∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.9、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.10、B【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12、C【分析】根据第二、四象限的角平分线上的点横坐标与纵坐标互为相反数,可得关于m的方程,求出m值即可得到A点坐标.【详解】解:由A(m-3,m+1)在第二、四象限的平分线上,得
(m-3)+(m+1)=0,
解得m=1,
所以m-3=-2,m+1=2,
A的坐标为(-2,2),
故选:C.【点睛】本题考查写出直角坐标系中点的坐标.理解第二、四象限的角平分线上的点横坐标与纵坐标互为相反数是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,边形有个顶点,和它不相邻的顶点有个,因而从边形的一个顶点出发的对角线有条,把边形分成个三角形.由分成三角形个数即可求出多边形内角和.【详解】解:从边形的一个顶点出发的对角线有条,可以把边形划分为个三角形,这个边形的内角和为.故答案为:,,.【点睛】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.14、【分析】关于x、y的二元一次方程组的解即为直线y=ax+b(a≠0)与y=cx+d(c≠0)的交点P(-1,3)的坐标.【详解】∵直线y=ax+b(a≠0)与y=cx+d(c≠0)相交于点P(-1,3),∴关于x、y的二元一次方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组),解题的关键是熟练的掌握一次函数与二元一次方程组的相关知识点.15、(1,6)【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【详解】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
∵,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵点C的坐标为(-2,0),点A的坐标为(-8,3),
∴OC=2,AD=CE=3,OD=8,
∴CD=OD-OC=6,OE=CE-OC=3-2=1,
∴BE=6,
∴则B点的坐标是(1,6)
故答案为(1,6)【点睛】本题借助于坐标与图形性质,重点考查了直角三角形的性质、全等三角形的判定和性质,解题的关键是做高线构造全等三角形.16、HL【解析】分析:需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.详解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为HL.点睛:本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.17、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.18、124°【解析】试题解析:在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣48°﹣76°=56°,在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°,又∵∠AFC=∠AEB=90°,∠A=56°,∴∠FDE=360°﹣90°﹣90°﹣56°=124°.三、解答题(共78分)19、(1)证明见解析;(2)1.【分析】(1)直接利用旋转的性质可得AP=AQ,∠PAQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC=∠APB=110°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC==1.【点睛】本题考查了旋转的性质,等边三角形的性质与判定,全等三角形的判定与性质,勾股定理.证明△BAP≌△CAQ是解(1)的关键,证明∠PQC=90°是解(2)的关键.20、10°【分析】在△ABC中,利用直角三角形两锐角互余,可得∠ACB=50°,利用MN是AC的垂直平分线,可得AD=CD,进而利用等边对等角可得∠DCA=∠A=40°,即可得出结论.【详解】∵∠B=90°,∠A=40°,∴∠ACB=50°.∵MN是线段AC的垂直平分线,∴AD=CD,∴∠DCA=∠A=40°,∴∠BCD=∠ACB﹣∠DCA=50°﹣40°=10°.【点睛】掌握并理解垂直平分线的性质.等边对等角、直角三角形两锐角互余的性质来解决问题.21、(1)点D坐标(2,4);(2)证明见详解;(3)点G(,).【分析】(1)两个解析式组成方程组,可求交点D坐标;
(2)先求出点A,点B,点E,点C坐标,由两点距离公式可求BC=AE=AC=BE=5,可证四边形ACBE是菱形;
(3)由“AAS”可证△ACG≌△BGF,可得BG=AC=5,由两点距离公式可求点G坐标.【详解】解:(1)根据题意可得:,解得:,∴点D坐标(2,4)(2)∵直线y=﹣2x+8分别交x轴,y轴于点A,B,∴点B(0,8),点A(4,0).∵直线yx+3交y轴于点C,∴点C(0,3).∵AE∥y轴交直线yx+3于点E,∴点E(4,5)∵点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC5,BE5,∴BC=AE=AC=BE,∴四边形ACBE是菱形;(3)∵BC=AC,∴∠ABC=∠CAB.∵∠CGF=∠ABC,∠AGF=∠ABC+∠BFG=∠AGC+∠CGF,∴∠AGC=∠BFG,且FG=CG,∠ABC=∠CAB,∴△ACG≌△BGF(AAS),∴BG=AC=5,设点G(a,﹣2a+8),∴(﹣2a+8﹣8)2+(a﹣0)2=52,∴a=±,∵点G在线段AB上,∴a,∴点G(,8﹣2)【点睛】本题是一次函数综合题,考查了一次函数的性质,菱形的判定和性质,全等三角形的判定和性质,两点距离公式等知识,利用两点距离公式求线段的长是本题的关键.22、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.试题解析:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°,又∵∠ACB=45°,∴∠DAC=45°,∴∠ACB=∠DAC,∴AD=CD,在△ABD和△CFD中,∠BAD=∠FCD,AD=CD∠ADB=∠FDC,∴△ABD≌△CFD;(2)∵△ABD≌△CFD,∴BD=FD,∴∠1=∠2,又∵∠FDB=90°,∴∠1=∠2=45°,又∵∠ACD=45°,∴△BEC中,∠BEC=90°,∴BE⊥AC.考点:1.等腰三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.23、(1)图见解析,C1(5,2)(2)是直角三角形,理由见解析【分析】(1)直接根据轴对称的性质画出,并写出的坐标;(2)根据勾股定理即可求解.【详解】(1)如图所示,为所求,C1(5,2);(2)AB=,AC=,BC=,∵AB2=AC2+BC2∴是直角三角形.【点睛】本题考查的是作图−轴对称变换,熟知关于y轴对称的点的坐标特点及勾股定理是解答此题的关键.24、(1)见解析;(2)(-1,1),;(3)见解析【分析】(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C即可,利用格点三角形分别求出三边的长度,即可求出△ABC的周长;(3)分别找出A、B、C关于y轴的对称点,顺次连接即可.【详解】(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系,如图;(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C,点C的坐标为(-1,1),,AC=BC=,则△ABC的周长为:;(3)分别找出A、B、C关于y轴的对称点,顺次连接,如图所示.【点睛】本题是对坐标系和轴对称的综合考查,熟练掌握轴对称,垂直平分线性质和勾股定理是解决本题的关键.25、(1)见解析;(2)CD=AD+BD,理由见解析;(3)CD=AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=AD,∵CD=DE+CE,∴CD=AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=AD,∴DH==AD,∵AD=AE,AH⊥DE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年地区分销权协议
- 2024年全新版股权转让合同
- 金融合伙协议
- 2024年婚约解除协议书
- 2024年城市物流货车短期租赁合同
- 2024年仓储租赁合同条款参考
- 2024年健身场地租赁合同
- 公司增资协议文案
- 2024年专职司机雇佣协议
- 网络直播推广补偿协议
- 3.1列代数式表示数量关系(第2课时 列代数式) 课件 2024-2025学年七年级数学上册 (人教版2024)
- 土壤污染重点监管单位隐患排查技术指南第4部分:医药制造业
- 变压器二手买卖合同范本2024年
- 2024年全国高考Ⅰ卷英语试题及答案
- 个人不再信访承诺书
- 2024年山西航空产业集团限公司校园招聘(高频重点提升专题训练)共500题附带答案详解
- NB-T 10436-2020 电动汽车快速更换电池箱冷却接口通.用技术要求
- 毓璜顶医院出院记录
- 人教版高中地理选择性必修1第一章地球的运动单元检测含答案
- xf124-2013正压式消防空气呼吸器标准
- 湖北省2024年中考英语真题【附真题答案】
评论
0/150
提交评论