版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区2025届数学八上期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.2.如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定3.已知多项式,则b、c的值为()A., B., C., D.,4.在下列各式中,计算正确的是()A. B. C. D.5.下列运算中正确的是()A.a5+a5=2a10 B.3a3•2a2=6a6C.a6÷a2=a3 D.(﹣2ab)2=4a2b26.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个7.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16cm B.28cm C.26cm D.18cm8.下列从左到右的运算是因式分解的是()A. B.C. D.9.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或1510.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°11.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.-2a+b C.b D.2a-b12.在平面直角坐标系中,点A关于x轴的对称点为A1(3,-2),则点A的坐标为()A.(-3,-2) B.(3,2) C.(3,-2) D.(-3、2)二、填空题(每题4分,共24分)13.如图,ABCDE是正五边形,△OCD是等边三角形,则∠COB=_____°.14.如图,等边的边长为2,则点B的坐标为_____.15.一次函数与的图象如图,则下列结论①②,且的值随着值的增大而减小.③关于的方程的解是④当时,,其中正确的有___________.(只填写序号)16.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.17.如图,将直线OA向上平移3个单位长度,则平移后的直线的表达式为_____.18.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.三、解答题(共78分)19.(8分)已知,如图,为等边三角形,点在边上,点在边上,并且和相交于点于.(1)求证:;(2)求的度数;(3)若,,则______.20.(8分)在等腰Rt△ABC中,∠C=90°,AC=BC,点M,N分别是边AB,BC上的动点,△BMN与△B′MN关于直线MN对称,点B的对称点为B′.(1)如图1,当B′在边AC上时,若∠CNB′=25°,求∠AMB′的度数;(2)如图2,当∠BMB′=30°且CN=MN时,若CM•BC=2,求△AMC的面积;(3)如图3,当M是AB边上的中点,B′N交AC于点D,若B′N∥AB,求证:B′D=CN.21.(8分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.根据图示填写下表:平均数分中位数分众数分A校______85______B校85______100结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.22.(10分)如图,在△ABC中,∠A=90°,BC的垂直平分线交BC于E,交AC于D,且AD=DE(1)求证:∠ABD=∠C;(2)求∠C的度数.23.(10分)如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.(1)求点的坐标;(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.24.(10分)如图正比例函数y=2x的图像与一次函数的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求的面积.25.(12分)已知的算术平方根是3,的立方根也是3,求的值.26.如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴对称的图形;(2)已知和关于轴成轴对称,写出顶点,,的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.2、A【解析】解:∵的两边BC和AC的垂直平分线分别交AB于D、E,∵边AB长为10cm,∴的周长为:10cm.故选A.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.3、C【分析】根据多项式乘多项式法则将等式左侧展开,然后对应系数即可求出结论.【详解】解:∵∴∴,故选C.【点睛】此题考查的是整式的乘法,掌握多项式乘多项式法则是解决此题的关键.4、C【分析】根据同底数幂的乘法和除法以及幂的乘方、积的乘方判断即可.【详解】A.,该选项错误;B.,该选项错误;C.,该选项正确;D.,该选项错误.故选:C.【点睛】此题考查同底数幂的乘法、除法以及幂的乘方、积的乘方,熟练掌握运算法则是解答本题的关键.5、D【解析】根据整式运算即可求出答案.【详解】A.a5+a5=2a5,故A错误;B.3a3•2a2=6a5,故B错误;C.a6÷a2=a4,故C错误;故选D.【点睛】此题考查整式的混合运算,解题关键在于掌握运算法则6、C【分析】根据“”可证明,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于与不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到,则利用平行线的判定方法可对③进行判断.【详解】解:是的中线,,,,,所以④正确;,所以①正确;与不能确定相等,和面积不一定相等,所以②错误;,,,所以③正确;故选:.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.7、B【分析】由线段垂直平分线的性质,可得AD=CD,然后,根据三角形的周长和等量代换,即可解答.【详解】∵DE是△ABC中边AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18cm+10cm=28cm.故选:B.【点睛】本题主要了考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.8、C【分析】按照因式分解的概念:把一个多项式分解成几个整式乘积的形式,逐一进行判断即可.【详解】A选项等号左右两边不相等,故错误;B选项等号右边不是乘积的形式,故错误;C选项等号右边是乘积的形式,故正确;D选项等号右边不是乘积的形式,故错误;故选:C.【点睛】本题主要考查因式分解,掌握因式分解的概念是解题的关键.9、C【分析】由于不知道已知边是底还是腰,进行分类讨论,并判断是否构成三角形,再求周长即可.【详解】解:等腰三角形的一条边长等于6,另一条边长等于3,①当腰为6时,三角形的周长为:6+6+3=1;②当腰为3时,3+3=6,三角形不成立;∴该等腰三角形的周长是1.故答案为C.【点睛】本题考查了等腰三角形的概念和三角形的三边关系,对等腰三角形的边分类讨论和应用三角形三边关系判断是否构成三角形是解题的关键,也是解题的易错点.10、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【详解】由题意知,当B.
P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.11、C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且|a|>|b|,∴.故选C.考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.12、B【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,且A1(3,-2)∴A的坐标为(3,2).所以答案为B选项.【点睛】本题主要考查了点关于x轴对称相关问题,熟练掌握相关规律是解题关键.二、填空题(每题4分,共24分)13、66°【分析】根据题意和多边形的内角和公式,可得正五边形的一个内角是108°,再根据等边三角形的性质和等腰三角形的性质计算即可.【详解】解:∵五边形ABCDE是正五边形,∴∠BCD=108°,CD=BC,∵△OCD是等边三角形,∴∠OCD=60°,OC=CD,∴OC=BC,∠OCB=108°﹣60°=48°,∴∠COB==66°.故答案为:66°.【点睛】本题主要考察了多边形的内角和,关键是得出正五边形一个内角的度数为108°,以及找出△OBC是等腰三角形.14、.【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,在Rt△BDO中,由勾股定理得:.∴点B的坐标为:.故答案为:.【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt△BDO是解决此题的关键.15、②③④【分析】根据函数图象与y轴交点,图象所经过的象限,两函数图象的交点可得答案.【详解】解:y2=x+a的图象与y轴交于负半轴,则a<0,故①错误;
直线y1=kx+b从左往右呈下降趋势,则k<0,且y的值随着x值的增大而减小,故②正确;
一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,则关于x的方程kx+b=x+a的解是x=3,故③正确;
一次函数y1=kx+b与y2=x+a的图象交点横坐标为3,当x>3时,y1<y2,故④正确;
故正确的有②③④,
故答案为:②③④.【点睛】本题主要考查了一次函数的性质和一次函数与一元一次方程,关键是能从函数图象中得到正确答案.16、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.17、y=2x+1【分析】设直线OA的解析式为:y=kx,代入(1,2)求出直线OA的解析式,再将直线OA向上平移1个单位长度,得到平移后的直线的表达式.【详解】设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移1个单位长度,则平移后的直线的表达式为:y=2x+1.故答案是:y=2x+1.【点睛】本题考查了直线的平移问题,掌握直线的解析式以及直线平移的性质是解题的关键.18、1【解析】过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.【详解】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=1∠POE=30°.∴PF=PE=OE=1.则PD=PF=1.故答案是:1.【点睛】考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF是解决的关键.三、解答题(共78分)19、(1)详见解析;(2)60°;(3)1.【分析】(1)结合等边三角形的性质,利用SAS可证明,由全等三角形对应边相等的性质可得结论;(2)由全等三角形对应角相等可得,再由三角形外角的性质可得的度数;(3)结合(2)可得,由直角三角形30度角的性质可得BM长,易知BE,由(1)可知AD长.【详解】(1)证明:∵为等边三角形,∴.在和中,∴.∴.(2)如图∵,∴.∴.(3)由(2)得,由(1)得【点睛】本题是三角形的综合题,涉及的知识点有全等三角形的判定与性质、等边三角形的性质,三角形外角的性质、直角三角形30度角的性质,灵活利用全等三角形的性质是解题的关键.20、(1)65°;(2);(3)见解析【分析】(1)由△MNB′是由△MNB翻折得到,推出∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,推出∠NMB=∠NMB′=57.5°,可得∠BMB°=115°解决问题.(2)如图2,作MH⊥AC于H.首先证明,推出S△ACM=即可解决问题.(3)如图3,设AM=BM=a,则AC=BC=a.通过计算证明CN=DB′即可.【详解】(1)如图,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∵△MNB′是由△MNB翻折得到,∴∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,∴∠NMB=∠NMB′=57.5°,∴∠BMB′=115°,∴∠AMB′=180°-115°=65°;(2)∵△MNB′是由△MNB翻折得到,∠BMB′=30°,∴∠BMN=∠NMB′=15°,∵∠B=45°,∴∠CNM=∠B+∠NMB=60°,∵CN=MN,∴△CMN是等边三角形,∴∠MCN=60°,∵∠ACB=90°,∴∠ACM=30°,如图,作MH⊥AC于H.∴∠MHC=90°,∴MH=CM,∵S△ACM=ACMH=BCCM=CMBC=;(3)如图,设AM=BM=a,则AC=BC=a.∵NB′∥AB,∴∠CND=∠B=45°,∠MND=∠NMB,∵∠MNB=∠MND,∴∠NMB=∠MNB,∴MB=BN=a,∴CN=a-a,∵∠C=90°,∴∠CDN=∠CND=45°,∴CD=CN,∵CA=CB,∴AD=BN=a,设AD交MB′于点O,∵MB=BN,∠B=45°,∴∠BMN=,∵△MNB′是由△MNB翻折得到,∴∠BMN=∠NMB′=,∴∠AMO=180∠BMN∠NMB′=180,∴是等腰直角三角形,且AM=a,∴AO=OM=a,OB′=OD=a-a,∴DB′=OD=a-a,∴B′D=CN.【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.21、;85;1.(2)A校成绩好些.校的方差,B校的方差.A校代表队选手成绩较为稳定.【分析】(1)根据平均数、众数、中位数的意见,并结合图表即可得出答案(2)根据平均数和中位数的意见,进行对比即可得出结论(3)根据方差的公式,代入数进行运算即可得出结论【详解】解:;85;1.A校平均数=分A校的成绩:75.1.85.85.100,众数为85分B校的成绩:70.75.1.100.100,中位数为1分校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.校的方差,B校的方差.,因此,A校代表队选手成绩较为稳定.【点睛】本题主要考查了平均数、众数、中位数、方差的意义,要注意找中位数要把数据从小到大进行排序,位于最中间的数或者两个数的平均数为中位数,以及注意众数可能不止一个是解题的关键22、(1)证明见解析(2)30°【分析】(1)依据线段垂直平分线的性质可知DB=DC,故此可得到∠C=∠DBC,然后利用角平分线的性质定理的逆定理可得到BD平分∠ABC,故此可证得∠ABD=∠C;(2)依据∠C+∠ABC=90°求解即可.【详解】(1)证明:∵DE⊥BC,∠A=90°即DA⊥AB且AD=DE,∴BD平分∠ABC.∴∠ABD=∠DBC.∵DE垂直平分BC,∴BD=CD.∴∠DBC=∠C.∴∠ABD=∠C.(2)∵∠ABC+∠C=90°,∠ABD=∠CBD=∠C,∴3∠C=90°.∴∠C=30°.【点睛】本题主要考查的是线段垂直平分线和角平分线的性质,熟练掌握相关定理是解题的关键.23、(1)A(8,0),C(0,4);(2)10;(3)y=2x-6,(4,2)【分析】(1)设OC=a,则OA=2a,在直角△AOC中,利用勾股定理即可求得a的值,则A和C的坐标即可求得;(2)重叠部分是△CEF,利用勾股定理求得AE的长,然后利用三角形的面积公式即可求解;(3)根据(1)求得AC的表达式,再由(2)求得E、F的坐标,利用待定系数法即可求得直线EF的函数解析式,联立可得点D坐标.【详解】解:(1)∵,∴设OC=a,则OA=2a,
又∵,即a2+(2a)2=80,
解得:a=4,
则A的坐标是(8,0),C的坐标是(0,4);(2)设AE=x,则OE=8-x,如图,由折叠的性质可得:AE=CE=x,∵C的坐标是(0,4),∴OC=4,
在直角△OCE中,42+(8-x)2=x2,
解得:x=5,∴CF=AE=5,
则重叠部分的面积是:×5×4=10;(3)设直线EF的解析式是y=mx+n,由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),∴,解得:,∴直线EF的解析式为y=2x-6,∵A(8,0),C(0,4),设AC的解析式是:y=px+q,代入得:,解得,∴AC的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国际贸易合同
- 2025开关插座采购合同标准版
- 2025年度高科技企业公司股权协议书模板3篇
- 2025年度智能家居生态链消费者协议3篇
- 2025年度新材料研发与应用公司整体转让协议版3篇
- 2025年度医疗设备融资租赁服务合同模板3篇
- 2025年度农村宅基地房买卖合同(农村电商服务站建设)
- 2025年度公租房合同(含租赁合同签订及备案费用)3篇
- 2025年度环保处理设备专业维修与改造合同3篇
- 2025年度新能源汽车充电基础设施合作项目协议书范本3篇
- ACC-AHA-HRSICD治疗适应证指南
- 共享单车电动车加盟城市代理协议模板
- 2024年上海市交大附中嘉定高二物理第一学期期末达标检测试题含解析
- (新版)焊工(初级)理论知识考试200题及答案
- 新版《电力设备典型消防规程》
- 《艰辛探索和建设成就》教学设计
- YS/T 673-2013还原钴粉
- GB/T 7631.5-1989润滑剂和有关产品(L类)的分类第5部分:M组(金属加工)
- GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法
- 七年级下册道德与法治复习资料
- 阿里云数字化转型生态介绍课件
评论
0/150
提交评论