2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题含解析_第1页
2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题含解析_第2页
2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题含解析_第3页
2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题含解析_第4页
2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省苏州市姑苏区数学八年级第一学期期末监测模拟试题试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(

)A.﹣2

B.2

C.0

D.12.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是()A.61 B.16 C.52 D.253.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为()A. B.+2 C.3 D.44.如图,、是的外角角平分线,若,则的大小为()A. B. C. D.5.化简-()2的结果是()A.6x-6B.-6x+6C.-4D.46.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.17.一个等腰三角形的两边长分别为4厘米、9厘米,则这个三角形的周长为()A.17或22 B.22 C.13 D.17或138.如图,点B、F、C、E在一条直线上,,,要使≌,需要添加下列选项中的一个条件是

A. B. C. D.9.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个10.若多项式能用完全平方公式进行因式分解,则值为()A.2 B. C. D.11.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.12.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm二、填空题(每题4分,共24分)13.计算:23×20.2+77×20.2=______.14.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①和的面积相等,②,③,④,⑤,其中一定正确的答案有______________.(只填写正确的序号)15.已知m+2n+2=0,则2m•4n的值为_____.16.等腰三角形的一个角是50°,则它的底角为__________°.17.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.18.等腰三角形的两边长分别为2和7,则它的周长是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.20.(8分)把下列各式化成最简二次根式.(1)(2)(3)(4)21.(8分)以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.22.(10分)如图,B、A、F三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.己知:______________________________________________________.求证:______________________________________________________.证明:23.(10分)已知,如图:长方形ABCD中,点E为BC边的中点,将D折起,使点D落在点E处.(1)请你用尺规作图画出折痕和折叠后的图形.(不要求写已知,求作和作法,保留作图痕迹)(2)若折痕与AD、BC分别交于点M、N,与DE交于点O,求证△MDO≌△NEO.24.(10分)数学课上有如下问题:如图,已知点C是线段AB上一点,分别以AC和BC为斜边在同侧作等腰直角△ACD和等腰直角△BCE,点P是线段AB上一个动点(不与A、B、C重合),连接PD,作∠DPQ=90°,PQ交直线CE于点Q.(1)如图1,点P在线段AC上,求证:PD=PQ;(2)如图2,点P在线段BC上,请根据题意补全图2,猜想线段PD、PQ的数量关系并证明你的结论.小明同学在解决问题(1)时,提出了这样的想法:如图3,先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC……请你结合小明同学的想法,完成问题(1)(2)的解答过程.25.(12分)如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.26.阅读解答题:(几何概型)条件:如图1:是直线同旁的两个定点.问题:在直线上确定一点,使的值最小;方法:作点关于直线对称点,连接交于点,则,由“两点之间,线段最短”可知,点即为所求的点.(模型应用)如图2所示:两村在一条河的同侧,两村到河边的距离分别是千米,千米,千米,现要在河边上建造一水厂,向两村送水,铺设水管的工程费用为每千米20000元,请你在上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用.(拓展延伸)如图,中,点在边上,过作交于点,为上一个动点,连接,若最小,则点应该满足()(唯一选项正确)A.B.C.D.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.2、B【分析】先设这个两位数的十位数字和个位数字分别为x,7-x,根据“如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数”列出方程,求出这个两位数.【详解】设这个两位数的十位数字为x,则个位数字为7−x,由题意列方程得,10x+7−x+45=10(7−x)+x,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.3、A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题解析:当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴P′R=∴PQ+QR的最小值为故选A.考点:一次函数综合题.4、B【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.【详解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分线∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故选:B.【点睛】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.5、D【解析】试题解析:∴故选D.6、B【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选B.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7、B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4cm和9cm,而没有明确腰、底分别是多少,所以要进行分类讨论,还要用三角形的三边关系验证能否组成三角形.【详解】解:分类讨论:情况一:若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;情况二:若9厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22(厘米).故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,最后养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8、A【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【详解】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选A.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.10、C【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】∵多项式x1+1ax+4能用完全平方公式进行因式分解,

∴1a=±4,

解得:a=±1.

故选:C.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.11、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【点睛】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.12、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,

∴EC=DE,

∴AE+DE=AE+EC=3cm.

故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.二、填空题(每题4分,共24分)13、1【分析】先把20.2提取出来,再把其它的数相加,然后再进行计算即可.【详解】根据题意得:

=1.【点睛】本题考查了因式分解的应用,解题的关键是找出公因式,再进行提取,是一道基础题.14、①③④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确;利用“SAS”证明③△BDF≌△CDE正确,根据全等三角形对应边相等,证明⑤正确,根据全等三角形对应角相等得∠F=∠DEF,再根据内错角相等,两直线平行可得④正确.【详解】解:由题意得BD=CD,点A到BD,CD的距离相等∴△ABD和△ACD的面积相等,故①正确;虽然已知AD为△ABC的中线,但是推不出来∠BAD和∠CAD一定相等,故②不正确;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴CE=BF,故⑤正确;∴∠F=∠DEF∴BF∥CE,故④正确;故答案为①③④⑤.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形面积相等,熟练掌握三角形判定的方法并准确识图是解题的关键.全等三角形的判定:SSS;SAS;ASA;AAS;H.L;全等三角形的性质:全等三角形对应边相等,对应角相等.15、【解析】把2m•4n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=-2代入求值即可.【详解】∵m+2n+2=0,∴m+2n=-2,∴2m•4n=2m•22n=2m+2n=2-2=.故答案为【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.16、50或1.【解析】已知一个内角是50°,则这个角可能是底角也可能是顶角,因此要分两种情况进行求解.【详解】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是1°.故答案是:50或1.【点睛】本题考查了等腰三角形的性质,解题时要全面思考,不要漏解.17、1260【分析】首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.18、16【分析】根据2和7可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为16【点睛】本题主要考查了三角形三边关系,也考查了等腰三角形的性质.关键是根据2,7,分别作为腰,由三边关系定理,分类讨论.三、解答题(共78分)19、(1)y=﹣x+2;(2)△AOD为直角三角形,理由见解析;(3)t=或.【分析】(1)将点A、B的坐标代入一次函数表达式:y=kx+b,即可求解;(2)由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,即可求解;(3)点C(,1),∠DBO=30°,则∠ODA=60°,则∠DOA=30°,故点C(,1),则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=2﹣t.①当OP=OM时,OQ=QH+OH,即(2﹣t)+(2﹣t)=t,即可求解;②当MO=MP时,∠OQP=90°,故OQ=OP,即可求解;③当PO=PM时,故这种情况不存在.【详解】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=或.【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.20、(1)6;(2)4;(3)+;(4)5-4【分析】(1)先将根号下的真分数化为假分数,然后再最简二次根式即可;(2)先计算根号下的平方及乘法,再计算加法,最后化成最简二次根式即可;(3)先分别化为最简二次根式,再去括号合并同类项即可;(4)先将看做一个整体,然后利用平方差公式计算即可.【详解】(1)(2)(3)===+(4)====【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.21、(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.【详解】(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°-∠ACE-∠CDF,又∵∠CDF=∠BDA,∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠DAB=90°.【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.22、见解析.【解析】本题答案不唯一,可以用(1)和(2)作为已知条件,(3)作为结论,构造命题.再结合图形说明命题的真假.【详解】命题:已知:AD∥BC,∠B=∠C求证:AD平分∠EAC.证明:AD∥BC∠B=∠EAD,∠C=∠DAC又∠B=∠C,∠EAD=∠DAC.即AD平分∠EAC.【点睛】本题考查的知识点是命题与定理,解题关键是掌握两直线平行,同位角相等;两直线平行,内错角相等.23、(1)图见解析;(2)证明见解析【分析】(1)作DE的垂直平分线分别交AD和BC于点M、N,MN即为折痕,再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)根据矩形的性质可得AD∥BC,从而得出∠MDO=∠NEO,然后根据垂直平分线的定义可得DO=EO,最后利用ASA即可证出结论.【详解】解:(1)分别以D、E为圆心,大于DE的长为半径作弧,两弧分别交于点P、Q,连接PQ,分别交AD和BC于点M、N,连接ME和DN,此时MN垂直平分DE,MN即为折痕;再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)∵四边形ABCD为矩形∴AD∥BC∴∠MDO=∠NEO∵MN垂直平分DE∴DO=EO在△MDO和△NEO中∴△MDO≌△NEO【点睛】此题考查的是作折叠图形、矩形的性质和全等三角形的判定,掌握用尺规作图作线段的垂直平分线、矩形的性质和全等三角形的判定是解决此题的关键.24、(1)见解析;(2)见解析【分析】(1)先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC即可得到结论;(2)过点P作PF⊥BC交CE的延长线于点F,再证明△PDC≌△PQF即可得到结论.【详解】(1)证明:过点P作PF⊥AC交CD于点F,如图,∵△ACD和△BCE均为等腰直角三角形,∴∠ACD=∠BCE=45°,∴∠PFC=45°,PF=PC∴∠PFD=135°,∠PCQ=180°-45°=135°,∴∠PFD=∠PCQ∵DP⊥PQ,PF⊥PC∴∠DPF+∠FPQ=∠CPQ+∠QPF=90°,∴∠DPF=∠QPC,在△DPF和△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论