![南通市重点中学2025届数学八上期末监测试题含解析_第1页](http://file4.renrendoc.com/view7/M00/37/07/wKhkGWbrEyyADvogAAGegBIzs7E644.jpg)
![南通市重点中学2025届数学八上期末监测试题含解析_第2页](http://file4.renrendoc.com/view7/M00/37/07/wKhkGWbrEyyADvogAAGegBIzs7E6442.jpg)
![南通市重点中学2025届数学八上期末监测试题含解析_第3页](http://file4.renrendoc.com/view7/M00/37/07/wKhkGWbrEyyADvogAAGegBIzs7E6443.jpg)
![南通市重点中学2025届数学八上期末监测试题含解析_第4页](http://file4.renrendoc.com/view7/M00/37/07/wKhkGWbrEyyADvogAAGegBIzs7E6444.jpg)
![南通市重点中学2025届数学八上期末监测试题含解析_第5页](http://file4.renrendoc.com/view7/M00/37/07/wKhkGWbrEyyADvogAAGegBIzs7E6445.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南通市重点中学2025届数学八上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.α B. C. D.180°-2α2.等于()A.2 B.-2 C.1 D.03.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1 B.2 C.3 D.44.如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是()A.△ACF B.△AED C.△ABC D.△BCF5.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,86.若一个多边形的各内角都等于140°,则该多边形是()A.五边形 B.六边形 C.八边形 D.九边形7.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤28.如图,轮船从处以每小时海里的速度沿南偏东方向匀速航行,在处观测灯塔位于南偏东方向上.轮船航行半小时到达处,在处观测灯塔位于北偏东方向上,则处与灯塔的距离是()A.海里 B.海里 C.海里 D.海里9.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形10.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2018的坐标为()A.(337,1) B.(337,﹣1) C.(673,1) D.(673,﹣1)11.如图,在直角三角形ABC中,AC=8,BC=6,∠ACB=90°,点E是AC的中点,点D在AB上,且DE⊥AC于E,则CD=()A.3 B.4 C.5 D.612.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5C.(﹣2a2)4=16x6 D.a6÷a2=a3二、填空题(每题4分,共24分)13.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.14.因式分解x-4x3=_________.15.如图,中,于D,要使,若根据“”判定,还需要加条件__________16.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.17.数据-3、-1、0、4、5的方差是_________.18.若等腰三角形的周长为26cm,一边为11cm,则腰长为_____.三、解答题(共78分)19.(8分)如图,在面积为3的△ABC中,AB=3,∠BAC=45°,点D是BC边上一点.(1)若AD是BC边上的中线,求AD的长;(2)点D关于直线AB和AC的对称点分别为点M、N,求AN的长度的最小值;(3)若P是△ABC内的一点,求的最小值.20.(8分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.21.(8分)已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)22.(10分)如图,在中,平分交于点,,垂足为,且.若记,(不妨设),求的大小(用含的代数式表示).23.(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.24.(10分)“军运会”期间,某纪念品店老板用5000元购进一批纪念品,由于深受顾客喜爱,很快售完,老板又用6000元购进同样数目的这种纪念品,但第二次每个进价比第一次每个进价多了2元.(1)求该纪念品第一次每个进价是多少元?(2)老板以每个15元的价格销售该纪念品,当第二次纪念品售出时,出现了滞销,于是决定降价促销,若要使第二次的销售利润不低于900元,剩余的纪念品每个售价至少要多少元?25.(12分)已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.26.如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6),直线AB交y轴于点D,动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动设运动时间为t秒,(1)求直线AB的解析式和CD的长.(2)当△PQD与△BDC全等时,求a的值.(3)记点P关于直线BC的对称点为,连结当t=3,时,求点Q的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.根据四边形内角和等于360°,可得∠ADC的度数,进而可得∠P+∠Q的度数,由对称性可得∠EDP+∠FDQ的度数,进而即可求解.【详解】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°-α,∴∠P+∠Q=180°-∠ADC=α,由对称性可知:EP=ED,FQ=FD,∴∠P=∠EDP,∠Q=∠FDQ,∴∠EDP+∠FDQ=∠P+∠Q=α,∴故选D.【点睛】本题主要考查轴对称的性质和应用,四边形的内角和定理以及三角形的内角和定理,掌握掌握轴对称图形的性质是解题的关键.2、C【解析】根据任何非0数的0次幂都等于1即可得出结论.【详解】解:故选C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.3、D【分析】如图,①根据三角形的内角和即可得到∠DAE=∠F;②根据角平分线的定义得∠EAC=,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的面积公式即可得到S△AEB:S△AEC=AB:CA;④根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB.【详解】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.【点睛】本题考查的知识点是关于角平分线的计算,利用三角形的内角和定理灵活运用角平分线定理是解此题的关键.4、B【解析】试题分析:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,在△ACD和△AED中,,∴△ACD≌△AED(SSS),故选B.考点:全等三角形的判定.5、C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.6、D【分析】先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【详解】每个外角的度数是:180°-140°=40°,
则多边形的边数为:360°÷40°=1.
故选:D.【点睛】考查了多边形的内角与外角.解题关键利用了任意多边形的外角和都是360度.7、C【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣1≥0,解得x≥1.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.8、D【分析】根据题中所给信息,求出△ABC是等腰直角三角形,然后根据已知数据得出AC=BC的值即可.【详解】解:根据题意,∠BCD=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°-30°=45°,∴△ABC是等腰直角三角形,∵BC=50×0.5=25(海里),∴AC=BC=25(海里),故答案为:D.【点睛】本题考查了等腰直角三角形与方位角,根据方位角求出三角形各角的度数是解题的关键.9、B【分析】根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.10、C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【详解】观察点的坐标变化特征可知:A1(0,1),A2(1,1)A3(1,0)A4(1,﹣1)A5(2,﹣1)A6(2,0)A7(2,1)A8(3,1)A9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A2018的坐标为(673,1).故选:C.【点睛】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.11、C【分析】根据已知条件DE是垂直平分线得到,根据等腰三角形的性质得到,结合∠ACB=90°可得从而,由跟勾股定理得到,于是得到结论.【详解】解:点为的中点,于,,,,,,,,,,,故选C.【点睛】本题考查了等腰三角形性质和判定、勾股定理,线段垂直平分线的性质,正确理解线段垂直平分线性质和等腰三角形性质是解题的关键.12、B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.二、填空题(每题4分,共24分)13、1.【解析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD+∠B=90°.∴∠ECF=∠B,在△ABC和△FEC中,∵∠ECF=∠B,EC=BC,∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA).∴AC=EF.∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=1cm.14、.【分析】先提取公因式,然后再用平方差公式进行因式分解即可.【详解】解:故答案为:.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式和完全平方公式的结构正确计算是本题的解题关键.15、AB=AC【解析】解:还需添加条件AB=AC.∵AD⊥BC于D,∴∠ADB=∠ADC=90°.在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL).故答案为AB=AC.16、1【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.17、9.1.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:方差是.故答案为:9.1.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可.18、11cm或7.5cm【解析】试题解析::①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26-11)=7.5cm,所以,腰长是11cm或7.5cm.三、解答题(共78分)19、(1)见解析;(2);(3)【分析】(1)作CE,DF分别垂直于AB于点E,F,已知CE⊥AB,S△ABC=3,∠BAC=45°,可得AE=CE=2,BE=1,因为DF∥CE,AD是BC边上的中线,可得BF=EF=,在Rt△AFD中利用勾股定理即可求出AD的长.(2)在Rt△BEC中,求得BC,当AD⊥CB时,AN=AD最小,根据等面积法,即可求出AD.(3)将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAC=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,可得EH=AH=2,在Rt△EHC中,求得EC,,的最小值即为CE的值.【详解】(1)作CE,DF分别垂直于AB于点E,F∵CE⊥AB,S△ABC=3,∠BAC=45°∴,BE=1,∵CE,DF分别垂直于AB于点E,F∴DF∥CE又∵AD是BC边上的中线∴,∴AF=在Rt△AFD中,∴(2)在Rt△BEC中,BC=当AD⊥CB时,AN=AD最小根据等面积法,得AN=故答案为:(3)将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAC=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,∵∠H=90°,∠EAH=45°,∴EH=AH=2,在Rt△EHC中,∴的最小值为.【点睛】本题考查了用三角函数和勾股定理解直角三角形,点到线段的最短距离,图形旋转的性质,线段和的最值问题.20、(1)见解析;(2)4【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【详解】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.【点睛】此题主要考查等腰三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质及等腰三角形的性质.21、见详解.【分析】由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P点.【详解】解:如图所示:
作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;
(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;
(3)以O为端点,过角内部的交点画一条射线;
(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;
(5)过两交点画一条直线;
(6)此直线与前面画的射线交于点P,
∴点P为所求的点.【点睛】本题考查作图-复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解题的关键.22、∠CFE=().【分析】利用角平分线和两角互余的性质求出∠DAE,再利用平行线的性质解决问题即可.【详解】∵∠BAC=180°-∠B-∠ACB=180°-,AD平分∠BAC,
∴∠CAD=∠BAC=90°,
∵AE⊥BC,
∴∠AEC=90°,∴∠EAC=90°,∴∠DAE=∠CAD∠EAC=90°,
∵AD∥CF,
∴∠CFE=∠DAE=.【点睛】本题考查三角形内角和定理,角平分线的定义,平行线的性质等知识,解题的关键是熟练掌握基本知识.23、(1)详见解析;(2)【分析】(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴∵AB=2DB=4,BE=3,【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)10元;(2)至少要1元.【分析】(1)设该纪念品第一次每个进价是x元,则第二次每个进价是(x+2)元,再根据等量关系:第二次进的个数=第一次进的个数即可列出方程,解方程即得结果;(2)设剩余的纪念品每个售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于900元即可列出关于y的不等式,解不等式即得结果.【详解】解:(1)设该纪念品第一次每个进价是x元,由题意得:,解得:x=10,经检验x=10是分式方程的解,答:该纪念品第一次每个进价是10元;(2)设剩余的纪念品每个售价y元,由(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报到证改派申请书
- 开业申请书格式
- 一点点加盟申请书
- 2024-2025学年高中政治课时分层作业19树立创新意识是唯物辩证法的要求含解析新人教版必修4
- 2024-2025学年高中语文第二单元五人和训练含解析新人教版选修先秦诸子蚜
- 2024-2025学年九年级物理下册第十六章电磁铁与自动控制16.1从永磁体谈起教案新版粤教沪版
- 居住证申请书范文
- 解除担保申请书
- 2025年度物流包装设计与运输保管服务协议
- 轮岗交流申请书
- 猫狗创业计划书
- 复产复工试题含答案
- 湖南省长沙市2023-2024学年八年级下学期入学考试英语试卷(附答案)
- 部编版语文三年级下册第六单元大单元整体作业设计
- 售后服务经理的竞聘演讲
- 临床医技科室年度运营发展报告
- 慢加急性肝衰竭护理查房课件
- 文件丢失应急预案
- 从建设和谐社会角度思考治超限载(十)
- 幼儿园小班开学家长会课件
- 云南华叶投资公司2023年高校毕业生招聘1人笔试参考题库(共500题)答案详解版
评论
0/150
提交评论