




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大数据处理框架:Storm:Storm的实时计算特性1大数据处理框架:Storm:实时计算特性1.1简介1.1.1Storm框架概述Storm是一个开源的分布式实时计算系统,由NathanMarz和BackType开发,后来被Twitter收购。Storm被设计用于处理大量实时数据流,它能够保证每个消息都被处理,并且处理过程是容错的。Storm的核心是一个流处理引擎,它能够将数据流分解成一系列的微任务,然后在集群中并行执行这些任务。Storm的架构类似于MapReduce,但是它是为实时处理而设计的,因此它能够处理无限的数据流,而不是有限的数据集。Storm的工作原理基于一个简单的模型:Topology。Topology是一个有向无环图(DAG),其中的节点是Spouts和Bolts。Spouts是数据源,负责从外部系统读取数据并将其发送到Storm集群。Bolts是数据处理器,负责处理Spouts发送的数据,并将处理后的数据发送到下一个Bolt或者输出到外部系统。Storm通过在集群中并行执行多个Spout和Bolt实例,实现了数据的实时处理和分析。1.1.2实时计算的重要性在大数据时代,实时计算变得越来越重要。传统的批处理系统,如HadoopMapReduce,虽然能够处理大量的历史数据,但是它们的处理速度较慢,无法满足实时处理的需求。实时计算系统,如Storm,能够处理无限的数据流,实时地分析和处理数据,这对于许多场景来说是至关重要的。例如,在金融领域,实时计算可以用于实时监测市场动态,及时发现异常交易,防止金融欺诈。在社交媒体领域,实时计算可以用于实时分析用户行为,提供个性化的推荐服务。在物联网领域,实时计算可以用于实时监测设备状态,及时发现设备故障,提高设备的可用性和可靠性。1.2实时计算特性详解1.2.1数据流处理Storm的数据流处理是其核心特性。在Storm中,数据流被表示为一个无限的、连续的、有序的事件序列。每个事件可以是一个简单的数据项,也可以是一个复杂的数据结构。Storm的数据流处理模型基于一个简单的原则:事件驱动。当一个新的事件到达时,Storm会将其发送到相应的Spout或Bolt,然后Spout或Bolt会处理这个事件,并将处理后的结果发送到下一个Bolt或者输出到外部系统。示例代码下面是一个简单的StormTopology示例,它使用了一个Spout和两个Bolt来处理数据流:importbacktype.storm.topology.TopologyBuilder;
importbacktype.storm.tuple.Fields;
importbacktype.storm.spout.SchemeAsSpout;
importbacktype.storm.scheme.IScheme;
importbacktype.storm.scheme.StringScheme;
importbacktype.storm.StormSubmitter;
importbacktype.storm.Config;
importbacktype.storm.tuple.Values;
importbacktype.storm.task.OutputCollector;
importbacktype.storm.task.TopologyContext;
importbacktype.storm.topology.IRichBolt;
importbacktype.storm.topology.OutputFieldsDeclarer;
importbacktype.storm.topology.base.BaseRichBolt;
importbacktype.storm.topology.base.BaseRichSpout;
importbacktype.storm.utils.Utils;
importjava.util.Map;
//定义Spout
publicclassMySpoutextendsBaseRichSpout{
privateOutputCollector_collector;
privateint_sequence;
@Override
publicvoidopen(Mapconf,TopologyContextcontext,OutputCollectorcollector){
_collector=collector;
_sequence=0;
}
@Override
publicvoidnextTuple(){
_collector.emit(newValues("HelloStorm"+_sequence++));
Utils.sleep(1000);
}
@Override
publicvoiddeclareOutputFields(OutputFieldsDeclarerdeclarer){
declarer.declare(newFields("word"));
}
}
//定义Bolt
publicclassMyBoltextendsBaseRichBolt{
privateOutputCollector_collector;
@Override
publicvoidprepare(MapstormConf,TopologyContextcontext,OutputCollectorcollector){
_collector=collector;
}
@Override
publicvoidexecute(Tupleinput){
Stringword=input.getStringByField("word");
_collector.emit(newValues(word,word.length()));
}
@Override
publicvoiddeclareOutputFields(OutputFieldsDeclarerdeclarer){
declarer.declare(newFields("word","length"));
}
}
//创建Topology
publicclassMyTopology{
publicstaticvoidmain(String[]args)throwsException{
TopologyBuilderbuilder=newTopologyBuilder();
builder.setSpout("spout",newSchemeAsSpout<String>(newStringScheme()),5);
builder.setBolt("split",newMyBolt(),8)
.shuffleGrouping("spout");
Configconf=newConfig();
conf.setDebug(true);
StormSubmitter.submitTopology("my-topology",conf,builder.createTopology());
}
}在这个示例中,MySpout从外部系统读取数据,并将其发送到Storm集群。MyBolt接收MySpout发送的数据,并将其长度计算出来,然后将结果发送到下一个Bolt或者输出到外部系统。1.2.2容错性Storm的另一个重要特性是其容错性。Storm通过在集群中并行执行多个Spout和Bolt实例,实现了数据处理的容错性。当一个Spout或Bolt实例发生故障时,Storm会自动将这个实例的数据重新分配到其他实例,从而保证了数据处理的连续性和可靠性。1.2.3可扩展性Storm的可扩展性也是其重要特性之一。Storm的Topology可以在集群中并行执行,因此它可以处理大量的数据流。当数据流的规模增加时,只需要增加Storm集群的规模,就可以保证数据处理的效率和性能。1.3结论Storm是一个强大的实时计算框架,它能够处理大量的实时数据流,实时地分析和处理数据。Storm的数据流处理模型基于事件驱动,其实时计算特性基于容错性和可扩展性。Storm的这些特性使其成为大数据实时处理的理想选择。2大数据处理框架:Storm:安装与配置2.1Storm的安装步骤2.1.1环境准备在开始安装Storm之前,确保你的系统满足以下条件:操作系统:推荐使用Linux发行版,如Ubuntu或CentOS。JDK:安装JDK1.8或更高版本。Zookeeper:Storm依赖于Zookeeper进行协调和管理,确保Zookeeper已安装并运行。Nimbus和Supervisor:选择一台机器作为Nimbus(集群的主节点),其他机器作为Supervisor(工作节点)。2.1.2下载Storm访问Storm的官方网站或GitHub仓库下载最新版本的Storm。解压下载的文件到一个目录,例如/opt/storm。2.1.3配置环境变量在你的~/.bashrc或~/.profile文件中添加以下行:exportSTORM_HOME=/opt/storm
exportPATH=$PATH:$STORM_HOME/bin然后运行source~/.bashrc或source~/.profile使更改生效。2.1.4启动Storm在Nimbus和Supervisor节点上,分别启动Nimbus和Supervisor服务:#在Nimbus节点上
$STORM_HOME/bin/stormnimbus
#在Supervisor节点上
$STORM_HOME/bin/stormsupervisor2.1.5验证安装运行以下命令检查Storm是否正确安装:$STORM_HOME/bin/storm如果安装成功,你应该能看到Storm的命令行界面。2.2配置Storm集群2.2.1配置storm.yamlStorm集群的核心配置文件是storm.yaml。你需要在Nimbus和Supervisor节点上分别配置这个文件。Nimbus节点配置在Nimbus节点的storm.yaml中,你需要指定以下配置:nimbus.host:Nimbus节点的主机名或IP地址。supervisor.slots.ports:Supervisor节点上用于接收任务的端口列表。storm.local.dir:Storm在本地文件系统上的工作目录。示例配置:nimbus.host:"nimbus-hostname"
supervisor.slots.ports:[6700,6701,6702,6703]
storm.local.dir:"/var/lib/storm"Supervisor节点配置在Supervisor节点的storm.yaml中,除了上述Nimbus节点的配置,你还需要指定:supervisor.host:Supervisor节点的主机名或IP地址。supervisor.slots.ports:与Nimbus节点配置相同,但确保端口不冲突。示例配置:nimbus.host:"nimbus-hostname"
supervisor.host:"supervisor-hostname"
supervisor.slots.ports:[6704,6705,6706,6707]
storm.local.dir:"/var/lib/storm"2.2.2配置ZookeeperStorm使用Zookeeper进行集群协调。确保Zookeeper的配置文件zoo.cfg中包含以下内容:server.id=hostname:port:对于每个Zookeeper节点,配置其主机名和端口。示例配置:server.1=n1:2888:3888
server.2=n2:2888:3888
server.3=n3:2888:38882.2.3配置Nimbus和Supervisor在Nimbus和Supervisor节点上,确保storm.yaml中的nimbus.seeds和supervisor.hosts字段正确配置,指向集群中的所有Nimbus和Supervisor节点。示例配置:nimbus.seeds:["nimbus-hostname"]
supervisor.hosts:["supervisor-hostname1","supervisor-hostname2"]2.2.4配置日志和监控为了便于管理和监控,配置Storm的日志和监控系统。这通常包括设置日志级别、日志文件位置以及集成监控工具如Ganglia或Nagios。2.2.5配置安全如果集群在生产环境中运行,确保配置Storm的安全特性,如SSL加密和身份验证。2.2.6配置性能根据你的工作负载,调整Storm的性能配置,如worker.childopts和topology.max.task.parallelism。2.2.7配置数据存储Storm支持多种数据存储选项,如HDFS、Cassandra或Riak。根据你的需求,配置数据存储的详细信息。2.2.8配置网络确保所有节点之间的网络通信畅通无阻,配置防火墙规则以允许必要的端口通信。2.2.9配置任务调度Storm允许你配置任务调度策略,如topology.scheduler.backpressure和topology.scheduler.strategy。2.2.10配置资源管理配置Storm的资源管理,如内存和CPU使用,以优化集群性能。2.2.11配置故障恢复设置Storm的故障恢复策略,如topology.message.timeout.secs和topology.worker.childopts,以确保集群的高可用性。2.2.12配置用户权限如果需要,配置Storm的用户权限和访问控制,以限制对集群的访问。2.2.13配置数据流Storm的数据流配置包括topology.builtin.metrics.enabled和topology.metrics.bucket.size.secs,用于监控和优化数据流。2.2.14配置数据源和目标根据你的数据处理需求,配置数据源(如Kafka)和目标(如HBase或Elasticsearch)的连接信息。2.2.15配置数据处理策略Storm允许你配置数据处理策略,如topology.task.max.failures和topology.spout.max.pending,以优化数据处理效率。2.2.16配置数据流拓扑在storm.yaml中,你可以配置数据流拓扑的详细信息,如topology.workers和topology.executors。2.2.17配置数据流组件配置数据流组件,如Spouts和Bolts的参数,以优化数据处理逻辑。2.2.18配置数据流任务设置数据流任务的配置,如topology.topology-class-name和topology.topology-id,以确保任务的正确执行。2.2.19配置数据流监控配置数据流的监控,如topology.metrics.enabled和topology.metrics.sample.rate,以实时监控数据流状态。2.2.20配置数据流优化根据你的数据流特性,配置优化策略,如topology.message.timeout.secs和topology.spout.wait.strategy。2.2.21配置数据流容错设置数据流的容错配置,如topology.task.max.failures和topology.spout.max.pending,以增强数据流的鲁棒性。2.2.22配置数据流扩展性为了支持大规模数据处理,配置数据流的扩展性,如topology.workers和topology.executors。2.2.23配置数据流性能根据你的性能需求,调整数据流的性能配置,如topology.worker.childopts和topology.worker.max.heap.size。2.2.24配置数据流安全如果需要,配置数据流的安全特性,如SSL加密和身份验证。2.2.25配置数据流日志设置数据流的日志配置,如日志级别和日志文件位置,以方便调试和监控。2.2.26配置数据流监控工具集成监控工具,如Ganglia或Nagios,以实时监控数据流的健康状态。2.2.27配置数据流资源管理配置数据流的资源管理,如内存和CPU使用,以优化集群资源分配。2.2.28配置数据流故障恢复设置数据流的故障恢复策略,如topology.message.timeout.secs和topology.worker.childopts,以确保数据流的连续性和可靠性。2.2.29配置数据流用户权限如果需要,配置数据流的用户权限和访问控制,以限制对数据流的访问。2.2.30配置数据流数据存储根据你的数据存储需求,配置数据流的数据存储选项,如HDFS、Cassandra或Riak。2.2.31配置数据流网络确保数据流组件之间的网络通信畅通无阻,配置防火墙规则以允许必要的端口通信。2.2.32配置数据流任务调度设置数据流任务的调度策略,如topology.scheduler.backpressure和topology.scheduler.strategy,以优化任务执行。2.2.33配置数据流数据源和目标配置数据流的数据源和目标连接信息,如Kafka和HBase,以支持数据的输入和输出。2.2.34配置数据流数据处理策略根据你的数据处理需求,配置数据流的数据处理策略,如topology.task.max.failures和topology.spout.max.pending,以优化数据处理逻辑。2.2.35配置数据流数据流拓扑在storm.yaml中,配置数据流拓扑的详细信息,如topology.workers和topology.executors,以支持大规模数据处理。2.2.36配置数据流数据流组件配置数据流组件,如Spouts和Bolts的参数,以优化数据处理性能。2.2.37配置数据流数据流任务设置数据流任务的配置,如topology.topology-class-name和topology.topology-id,以确保数据流任务的正确执行。2.2.38配置数据流数据流监控配置数据流的监控,如topology.metrics.enabled和topology.metrics.sample.rate,以实时监控数据流状态。2.2.39配置数据流数据流优化根据你的数据流特性,配置优化策略,如topology.message.timeout.secs和topology.spout.wait.strategy。2.2.40配置数据流数据流容错设置数据流的容错配置,如topology.task.max.failures和topology.spout.max.pending,以增强数据流的鲁棒性。2.2.41配置数据流数据流扩展性为了支持大规模数据处理,配置数据流的扩展性,如topology.workers和topology.executors。2.2.42配置数据流数据流性能根据你的性能需求,调整数据流的性能配置,如`top3Storm的基本架构3.1拓扑结构解析在Storm中,拓扑(Topology)是数据流处理的基本单元,它由一组Spout和Bolt组成,通过定义它们之间的连接来构建数据处理流程。拓扑结构的设计灵活性和可扩展性是Storm实时计算特性的重要体现。3.1.1SpoutSpout是数据流的源头,负责从外部数据源(如Kafka、RabbitMQ或数据库)读取数据,并将其发送到Storm集群中进行处理。Spout可以是可靠的或不可靠的,这取决于数据处理的语义需求。示例:KafkaSpout//导入必要的库
importorg.apache.storm.kafka.bolt.KafkaBolt;
importorg.apache.storm.kafka.spout.KafkaSpout;
importorg.apache.storm.kafka.spout.KafkaSpoutConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutStreamType;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentStateMapper;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapper;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilder;
importorg.apache.storm.kafka.spout.KafkaSpoutTridentTupleMapperBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfigBuilderConfig;
//创建KafkaSpout配置
KafkaSpoutConfig<String,String>spoutConfig=KafkaSpoutConfig.builder("localhost:9092","test-topic")
.setSpoutStreamType(KafkaSpoutStreamType.NOT_SERIALIZED)
.setGroupId("storm-group")
.build();
//创建KafkaSpout
KafkaSpout<String,String>kafkaSpout=newKafkaSpout<>(spoutConfig);在上述代码中,我们首先创建了一个KafkaSpoutConfig对象,指定了Kafka的Broker地址和主题名称。然后,我们使用这个配置对象来实例化一个KafkaSpout,这将作为数据流的源头。3.1.2BoltBolt是数据流处理的处理单元,它接收来自Spout或其他Bolt的数据,执行处理逻辑,并将结果发送到下一个Bolt或输出到外部系统。Bolt可以实现复杂的数据处理逻辑,如过滤、聚合、连接等。示例:WordCountBolt//导入必要的库
importorg.apache.storm.task.OutputCollector;
importorg.apache.storm.task.TopologyContext;
importorg.apache.storm.topology.OutputFieldsDeclarer;
importorg.apache.storm.topology.base.BaseRichBolt;
importorg.apache.storm.tuple.Fields;
importorg.apache.storm.tuple.Tuple;
importorg.apache.storm.tuple.Values;
importjava.util.Map;
//定义WordCountBolt
publicclassWordCountBoltextendsBaseRichBolt{
privateOutputCollectorcollector;
privateMap<String,Integer>wordCounts;
@Override
publicvoidprepare(MapstormConf,TopologyContextcontext,OutputCollectorcollector){
this.collector=collector;
this.wordCounts=newHashMap<>();
}
@Override
publicvoidexecute(Tupleinput){
Stringword=input.getStringByField("word");
Integercount=wordCounts.get(word);
if(count==null){
count=0;
}
wordCounts.put(word,count+1);
collector.emit(newValues(word,count+1));
}
@Override
publicvoiddeclareOutputFields(OutputFieldsDeclarerdeclarer){
declarer.declare(newFields("word","count"));
}
}在上述代码中,我们定义了一个WordCountBolt类,它继承自BaseRichBolt。在prepare方法中,我们初始化了一个OutputCollector和一个Map来存储单词计数。execute方法接收一个Tuple,从中提取单词,并更新计数。最后,我们通过collector将结果发送出去。declareOutputFields方法用于声明Bolt输出的字段。3.2Spout与Bolt详解Spout和Bolt是Storm中数据流处理的两个核心组件,它们通过定义数据流的源头和处理逻辑,共同构建了Storm的实时计算能力。3.2.1SpoutSpout负责从外部数据源读取数据,并将其转换为Storm可以处理的格式。Spout可以是可靠的,这意味着Storm会确保每条数据至少被处理一次,即使在系统故障的情况下也是如此。不可靠的Spout则不提供这样的保证,数据可能会在故障时丢失。3.2.2BoltBolt是数据流处理的执行单元,它接收数据,执行处理逻辑,并将结果发送到下一个Bolt或输出到外部系统。Bolt可以实现各种数据处理逻辑,如过滤、聚合、连接等。Bolt的处理逻辑是通过execute方法实现的,该方法接收一个Tuple作为输入,并通过OutputCollector将结果发送出去。3.2.3连接Spout和Bolt之间的连接是通过定义数据流的流向来实现的。在Storm中,数据流的流向是通过拓扑结构中的箭头来表示的。例如,如果一个Bolt需要接收来自一个Spout的数据,我们可以在拓扑结构中定义一个从Spout到Bolt的箭头。3.2.4示例:构建拓扑//导入必要的库
importorg.apache.storm.Config;
importorg.apache.storm.LocalCluster;
importorg.apache.storm.StormSubmitter;
importorg.apache.storm.topology.TopologyBuilder;
importorg.apache.storm.tuple.Fields;
//创建拓扑构建器
TopologyBuilderbuilder=newTopologyBuilder();
//添加Spout
builder.setSpout("kafka-spout",kafkaSpout,1);
//添加Bolt
builder.setBolt("word-count-bolt",newWordCountBolt(),2)
.shuffleGrouping("kafka-spout");
//创建配置
Configconf=newConfig();
conf.setDebug(false);
//提交拓扑
try{
StormSubmitter.submitTopology("word-count-topology",conf,builder.createTopology());
}catch(Exceptione){
e.printStackTrace();
}在上述代码中,我们首先创建了一个TopologyBuilder对象。然后,我们添加了一个KafkaSpout和一个WordCountBolt,并定义了它们之间的连接。最后,我们创建了一个配置对象,并使用StormSubmitter提交拓扑到Storm集群中。通过上述示例,我们可以看到Storm如何通过Spout和Bolt构建实时数据处理流程,以及如何定义它们之间的连接。这种灵活的架构使得Storm能够处理各种实时数据流场景,从简单的数据过滤到复杂的事件处理和流式计算。4实时数据流处理4.1数据流处理模型在大数据处理领域,数据流处理模型是处理实时数据的关键。不同于批处理,数据流处理需要系统能够持续地接收、处理和响应数据,而这些数据通常是以高速、连续的方式产生的。Storm,作为一款开源的分布式实时计算系统,提供了强大的数据流处理能力,其核心模型基于“流”和“拓扑”。4.1.1流(Stream)在Storm中,流是数据的连续序列,可以看作是无限的数据集。流中的数据以元组(tuple)的形式存在,每个元组包含一组字段,这些字段可以是任何类型的数据。流可以来源于各种数据源,如消息队列、数据库、传感器等,也可以是Storm内部组件生成的数据。4.1.2拓扑(Topology)拓扑是Storm中数据流处理的基本单元,它定义了数据流的处理逻辑和数据流的流向。一个拓扑由多个Bolt和Spout组成,通过定义它们之间的连接,形成一个有向无环图(DAG)。Spout是数据流的源头,负责从外部数据源读取数据并将其发送到Storm集群中。Bolt则是数据流的处理器,它可以接收来自一个或多个Spout或Bolt的数据,进行处理后,再将数据发送到下一个Bolt或输出到外部系统。4.1.3示例:使用Storm进行实时数据流处理假设我们有一个实时日志数据流,需要对日志中的关键词进行实时计数。下面是一个使用Storm实现的简单示例://Spout:读取实时日志数据
publicclassLogSpoutextendsBaseRichSpout{
privateSpoutOutputCollector_collector;
privateRandom_rand=newRandom();
publicvoidopen(Mapconf,TopologyContextcontext,SpoutOutputCollectorcollector){
this._collector=collector;
}
publicvoidnextTuple(){
String[]keywords={"error","warning","info"};
Stringkeyword=keywords[_rand.nextInt(keywords.length)];
_collector.emit(newValues(keyword));
try{
Thread.sleep(1000);
}catch(InterruptedExceptione){
e.printStackTrace();
}
}
}
//Bolt:对关键词进行计数
publicclassKeywordCounterBoltextendsBaseBasicBolt{
privateMap<String,Integer>_counts=newHashMap<>();
publicvoidexecute(BasicInputinput,BasicOutputCollectorcollector){
Stringkeyword=input.getStringByField("keyword");
Integercount=_counts.get(keyword);
if(count==null){
count=0;
}
_counts.put(keyword,count+1);
collector.emit(newValues(keyword,count+1));
}
}
//定义拓扑
TopologyBuilderbuilder=newTopologyBuilder();
builder.setSpout("log-spout",newLogSpout(),5);
builder.setBolt("counter-bolt",newKeywordCounterBolt(),8)
.shuffleGrouping("log-spout");
//提交拓扑
Configconfig=newConfig();
LocalClustercluster=newLocalCluster();
cluster.submitTopology("log-counter",config,builder.createTopology());在这个示例中,LogSpout模拟了一个实时日志数据源,每秒生成一个随机关键词。KeywordCounterBolt则负责接收这些关键词,并进行计数。拓扑定义了数据流的流向,即从LogSpout到KeywordCounterBolt。4.2窗口与滑动窗口应用在实时数据流处理中,窗口是一个重要的概念,它允许系统在一段时间内或一定数量的数据上进行聚合操作。窗口可以分为时间窗口和滑动窗口。4.2.1时间窗口时间窗口定义了一个固定的时间段,在这个时间段内的数据将被聚合处理。例如,可以定义一个1分钟的时间窗口,对过去1分钟内的数据进行汇总。4.2.2滑动窗口滑动窗口则是在时间窗口的基础上,定义了一个窗口的滑动步长。例如,定义一个1分钟的时间窗口和30秒的滑动步长,意味着每30秒,系统将对过去1分钟内的数据进行一次汇总,然后窗口向前滑动30秒,继续对新的1分钟内的数据进行汇总。4.2.3示例:使用滑动窗口进行实时数据流处理假设我们需要对实时日志数据流中的关键词进行每分钟的滑动窗口计数,窗口滑动步长为30秒。下面是一个使用Storm实现的示例://定义滑动窗口Bolt
publicclassSlidingWindowBoltextendsBaseRichBolt{
privateSlidingWindow_window=newSlidingWindow(60,30);//1分钟窗口,30秒滑动步长
privateMap<String,Integer>_counts=newHashMap<>();
publicvoidprepare(MapstormConf,TopologyContextcontext,OutputCollectorcollector){
this.collector=collector;
}
publicvoidexecute(Tupleinput){
Stringkeyword=input.getStringByField("keyword");
_windo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭加工技术及应用考核试卷
- 糖果与巧克力产品创新与研发流程优化实践案例解析实践案例考核试卷
- 热塑性聚氨酯合成考核试卷
- 租赁设备市场市场定位研究考核试卷
- 2025租房合同范本下载3
- 2025经济适用房买卖合同范本
- 2025【高级咨询服务合同】咨询服务合同
- 2025办公室租赁合同协议书
- 苏少版小学美术四年级上册全一册教案设计
- 二零二五版工程借款协议合同书范例
- CNC车间绩效考核管理制度
- 物业客服培训课件
- 制造业生产流程标准化管理手册
- 2024年全国大学英语CET四级考试试题与参考答案
- 国家环境空气质量监测城市站社会化运维交接工作手册
- 广西某农贸市场建设项目可行性研究报告
- TSHNX 001-2024 乳制品企业有害生物防制技术规范
- 2024-2030年中国脑动脉瘤治疗行业市场发展趋势与前景展望战略分析报告
- 辽宁省协作校2024-2025学年高二英语下学期期末考试试题
- DL∕T 5362-2018 水工沥青混凝土试验规程
- 药品生产企业质量管理评审要求
评论
0/150
提交评论