专题7-4圆锥曲线五个方程型大题归类(原卷版)_第1页
专题7-4圆锥曲线五个方程型大题归类(原卷版)_第2页
专题7-4圆锥曲线五个方程型大题归类(原卷版)_第3页
专题7-4圆锥曲线五个方程型大题归类(原卷版)_第4页
专题7-4圆锥曲线五个方程型大题归类(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题7-4圆锥曲线五个方程型大题归类目录TOC\o"1-1"\h\u题型01五个方程基础模板 1题型02千变万化的直线设法 2题型03无定点无斜率型双变量 3题型04五个方程常见题型:斜率和定 4题型05双变量基础型:直线过定点 5题型06定点:斜率积型 6题型07定点:斜率比值型 7题型08“第六个方程”型转化难题 8题型09圆过定点 9题型10定值型 10题型11面积最值型 11题型12切线型 12高考练场 13题型01五个方程基础模板【解题攻略】基本模板实战模板(如典型例题1得分析)独一无二的总结,千军万马中杀出来的实战经验,简称五个方程法。1、设点,2、方程1:设直线:此处还有千言万语,在后边分类细说。3、方程2:曲线:椭圆,双曲线,抛物线,或者其他(很少出现),注意一个计算技巧,方程要事先去分母4、方程3:联立方程,整理成为关于x(或者y)的一元二次方程。要区分,椭圆,双曲线,和抛物线联立后方程的二次项能否为零这就是实战经验。5、(1);(2)二次项系数是否为0;这两条,根据题确定是直接用,或者冷处理。但是必须考虑。6、方程4、5:韦达定理7、寻找第六个方程,第六个方程其实就是题目中最后一句话:且,以上过程,以方程个数记,即是五个方程法。也就是许多老师所说的“韦达定理”法。这其中的华丽变化,以及解析几何的后续难题,都是从这五个方程中变化而来,而这是许多老师不一定能完全说透的地方。以上过程,简单的一个判断图形,如图:简单总结为:一“直”一“曲”【典例1-1】(上海市春季高考数学试卷(含答案))已知椭圆的两个焦点分别为、,短轴的两个端点分别为(1)若为等边三角形,求椭圆的方程;(2)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.【典例1-2】(普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.【变式1-1】(2023·四川成都·校联考一模)已知椭圆的左、右焦点分别为,,短半轴长为1,点在椭圆上运动,且的面积最大值为.(1)求椭圆的方程;(2)当点为椭圆的上顶点时,设过点的直线交椭圆于,两点,直线,的斜率分别为,,求证:为定值.【变式1-2】(2023·全国·模拟预测)已知动点M与定点,满足.(1)求动点M的轨迹C的方程.(2)已知直线与曲线C交于P,Q两点,点T为x轴上一点,直线PT,QT的斜率分别为,试问:是否存在使为定值的点T?若存在,求出点T的坐标,并求出定值;若不存在,请说明理由.题型02千变万化的直线设法【解题攻略】如果所过定点在x轴上,为(m,0),也可以设为,此时包含了斜率不存在的情况,但是反而不包含x轴这条直线。【典例1-1】已知椭圆过点,且离心率为.(1)求椭圆C的方程;(2)已知直线与椭圆交于不同的两点P,Q,那么在x轴上是否存在点M,使且,若存在,求出该直线的方程;若不存在,请说明理由.贵州省2023届高三上学期333高考备考诊断性联考(一)数学(理)试题【典例1-2】已知抛物线的顶点在原点,焦点坐标为.(1)求抛物线的方程;(2)若直线与抛物线交于两点,求面积的最小值.陕西省渭南市华阴市2022届高三上学期摸底考试文科数学试题【变式1-1】已知椭圆的左焦点为F,右顶点为A,离心率为,B为椭圆C上一动点,面积的最大值为.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足,若,求的值.【变式1-2】已知椭圆的左,右焦点分别为,上顶点为,且为等边三角形.经过焦点的直线与椭圆相交于两点,的周长为.(1)求椭圆的方程;(2)试探究:在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由..题型03无定点无斜率型双变量【解题攻略】当题中的直线既无斜率,又不过定点线,就要设成“双变量”型:,依旧得讨论k是否存在情况当直线既不过定点,也不知斜率时,设直线,就需要引入两个变量了。(1)(2),此时直线不包含水平,也要适当的补充讨论。(3)设“双变量”时,第一种设法较多。因为一般情况下,没有了定点在x轴上,那么第二种设法实际上也没有特别大的计算优势。如第1题。(4)重要!双变量设法,在授课时,一定要讲清楚以下这个规律:一般情况下,试题中一定存在某个条件,能推导出俩变量之间的函数关系。这也是证明直线过定点的理论根据之一。【典例1-1】椭圆的离心率是,且过点.(1)求的方程;(2)过点的直线与的另一个交点分别是,与轴分别交于,且于点,是否存在定点使得是定值?若存在,求出点的坐标与的值;若不存在,请说明理由.【典例1-2】已知直线与抛物线交于,两点,且与轴交于点,过点,分别作直线的垂线,垂足依次为,,动点在上.(1)当,且为线段的中点时,证明:;(2)记直线,,的斜率分别为,,,是否存在实数,使得?若存在,求的值;若不存在,请说明理由.【变式1-1】已知双曲线的顶点为,,过右焦点作其中一条渐近线的平行线,与另一条渐近线交于点,且.点为轴正半轴上异于点的任意点,过点的直线交双曲线于C,D两点,直线与直线交于点.(1)求双曲线的标准方程;(2)求证:为定值.【变式1-2】已知椭圆:的离心率为,且过点.(1)求椭圆的方程;(2)设不过点的直线与椭圆交于,两点,关于原点的对称点为,记直线,,的斜率分别为,,,若,证明直线的斜率为定值.题型04五个方程常见题型:斜率和定【解题攻略】给定椭圆,与椭圆上定点P,过P点走两条射线PA、PB,与椭圆交与A和B两点,记直线PA、PB的斜率分别为K1,K2,则有【典例1-1】椭圆:()的左焦点为,且椭圆经过点,直线()与交于,两点(异于点).(1)求椭圆的方程;(2)证明:直线与直线的斜率之和为定值,并求出这个定值.【典例1-2】设为抛物线上两点,且线段的中点在直线上.(1)求直线的斜率;(2)设直线与抛物线交于点,记直线,的斜率分别为,,当直线经过抛物线的焦点时,求的值.【变式1-1】已知右焦点为的椭圆经过点.(1)求椭圆的方程;(2)经过的直线与椭圆分别交于、(不与点重合),直线、分别与轴交于、,是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.【变式1-2】已知点F是椭圆的右焦点,P是椭圆E的上顶点,O为坐标原点且.(1)求椭圆的离心率e;(2)已知,,过点M作任意直线l与椭圆E交于A,B两点.设直线,的斜率分别为,,若,求椭圆E的方程..题型05双变量基础型:直线过定点【解题攻略】直线过定点:1、直线多为y=kx+m型2.目标多为求:m=f(k)3.一些题型,也可以直接求出对应的m的值【典例1-1】已知椭圆过点,长轴长为.(1)求椭圆的方程;(2)直线与椭圆交于点,直线分别交直线于点,为坐标原点.若,求证:直线经过定点.【典例1-2】已知双曲线经过点(,1)(1)求双曲线C的离心率;(2)若直线与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以AB为直径的圆过双曲线C的左顶点D,求证:直线l过定点,并求出该定点的坐标.【变式1-1】已知点F是抛物线的焦点,动点P在抛物线上.(1)写出抛物线的焦点坐标和准线方程;(2)设点,求的最小值:(3)设直线l与抛物线交于D,E两点,若抛物线上存在点P,使得四边形DPEF为平行四边形,证明:直线l过定点,并求出这个定点的坐标.【变式1-2】已知为坐标原点,点在双曲线上,直线交于,两点.(1)若直线过的右焦点,且斜率为,求的面积;(2)若直线,与轴分别相交于,两点,且,证明:直线过定点.题型06定点:斜率积型【解题攻略】给定椭圆,与椭圆上定点P,过P点走两条射线PA、PB,与椭圆交与A和B两点,记直线PA、PB的斜率分别为K1,K2,则有【典例1-1】已知圆经过点,且与轴相切,切点为坐标原点.(1)求圆的标准方程;(2)直线:与圆交于,两点,直线:与圆交于,两点,且.(i)若,求四边形的面积;(ii)求证:直线恒过定点.【典例1-2】已知椭圆的左右顶点为、,直线.已知为坐标原点,圆过点、交直线于、两点,直线、分别交椭圆于、.(1)记直线,的斜率分别为、,求的值;(2)证明直线过定点,并求该定点坐标.【变式1-1】已知抛物线的焦点,为坐标原点,、是抛物线上异于的两点.(1)求抛物线的方程;(2)若直线、的斜率之积为,求证:直线过轴上一定点.【变式1-2】已知椭圆C上任意一点P(x,y)到点F(-1,0)的距离与到直线x=-4的距离的比等于.(1)求椭圆C的标准方程;(2)若直线l与椭圆C相交于M,N两点,A(2,0),记直线AM,AN的斜率分别为kAM,kAN,且满足kAM·kAN=-1.证明:直线l过定点.题型07定点:斜率比值型【典例1-1】椭圆的左右焦点分别为,焦距为,点M为椭圆上位于x轴上方的一点,,且的面积为2.(1)求椭圆C的方程;(2)设椭圆的左、右顶点分别为,直线交椭圆于两点,记直线的斜率为,直线的斜率为,已知.求证:直线恒过定点.【典例1-2】已知椭圆的离心率为,椭圆上一动点与左、右焦点构成的三角形面积最大值为.(1)求椭圆的方程;(2)设椭圆的左、右顶点分别为,直线交椭圆于两点,记直线的斜率为,直线的斜率为,已知.①求证:直线恒过定点;②设和的面积分别为,求的最大值.【变式1-1】已知双曲线的左焦点坐标为,直线与双曲线交于两点,线段中点为.(1)求双曲线的方程;(2)经过点与轴不重合的直线与双曲线交于两个不同点,点,直线与双曲线分别交于另一点.①若直线与直线的斜率都存在,并分别设为.是否存在实常数,使得?若存在,求出的值;若不存在,请说明理由.②证明:直线恒过定点.【变式1-2】在一张纸上有一个圆:,定点,折叠纸片使圆上某一点好与点重合,这样每次折叠都会留下一条直线折痕,设折痕与直线的交点为.(1)求证:为定值,并求出点的轨迹方程;(2)设,为曲线上一点,为圆上一点(,均不在轴上).直线,的斜率分别记为,,且,求证:直线过定点,并求出此定点的坐标.题型08“第六个方程”型转化难题【解题攻略】在一直一曲五个方程(韦达定理代入型)题型中,主要的难点在于怎么转化出“第六个方程”。具有明显的可转化为韦达定理特征的。属于较容易的题。隐藏较深的条件,需要用一些技巧,把条件转化为点坐标之间的关系,再转化为韦达定理。没有固定的转化技巧,可以在训练中积累相关化归思想。【典例1-1】设椭圆(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若(O为原点),求k的值.【典例1-2】已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆上的点到两个焦点的距离之和为.(1)求椭圆的方程;(2)设为椭圆的左顶点,过点的直线与椭圆交于点,与轴交于点,过原点且与平行的直线与椭圆交于点.求的值.【变式1-1】如图,已知椭圆:过点,离心率.(1)求椭圆的方程;(2)如图,直线平行于(为原点),且与椭圆交于两点、,与直线交于点(介于、两点之间).(i)当面积最大时,求的方程;(ii)求证:.【变式1-2】已知点在椭圆上,设,,分别为椭圆的左顶点、上顶点、下顶点,且点到直线的距离为.(1)求椭圆的方程;(2)设为坐标原点,,为椭圆上的两点,且,求证:的面积为定值,并求出这个定值.题型09圆过定点【解题攻略】圆过定点,有常见几方面的思维利用以“某线段为直径”,转化为向量垂直计算利用对称性,可以猜想出定点,并证明。通过推导求出定点(难度较大)【典例1-1】已知椭圆和直线l:,椭圆的离心率,坐标原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,若直线与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.【典例1-2】已知点F为双曲线的右焦点,过F的任一直线l与交于A,B两点,直线.(1)若为曲线上任一点,且M到直线的距离为d,求的值;(2)若为曲线上一点,直线MA,MB分别与直线交于D,E两点,问以线段DE为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由.【变式1-1】.已知是焦距为的双曲线上一点,过的一条直线与双曲线的两条渐近线分别交于,且,过作垂直的两条直线和,与轴分别交于两点,其中与轴交点的横坐标是.(1)证明:;(2)求的最大值,并求此时双曲线的方程;(3)判断以为直径的圆是否过定点,如果是,求出所有定点;如果不是,说明理由.【变式1-2】已知抛物线的焦点为,准线为.(1)若为双曲线的一个焦点,求双曲线的渐近线方程;(2)设与轴的交点为,点在第一象限,且在上,若,求直线的方程;(3)经过点且斜率为的直线与相交于、两点,为坐标原点,直线、分别与相交于点.试探究:以线段为直径的圆是否过定点,若是,求出定点的坐标;若不是,说明理由.题型10定值型【解题攻略】求定值问题常见的思路和方法技巧:从特殊入手,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.求定值题型,运算量大,运算要求高,属于中等以上难度的题【典例1-1】已知椭圆:(,),离心率为,且点在椭圆上.(1)求椭圆的方程;(2)若椭圆上的任意一点(除短轴的端点外)与短轴的两个端点,的连线分别与轴交于,两点,求证为定值.【典例1-2】双曲线的一条渐近线方程为,且经过点.(1)求的方程;(2)为坐标原点,过双曲线上一动点(在第一象限)分别做的两条渐近线的平行线为,且,与轴分别交于P,Q,求证:为定值.【变式1-1】.已知O为坐标原点,M是椭圆上的一个动点,点N满足,设点N的轨迹为曲线.(1)求曲线的方程.(2)若点A,B,C,D在椭圆上,且与交于点P,点P在上.证明:的面积为定值.【变式1-2】已知一动点C与定点的距离与C到定直线l:的距离之比为常数.(1)求动点C的轨迹方程;(2)过点F作一条不垂直于y轴的直线,与动点C的轨迹交于M,N两点,在直线l上有一点,记直线PM,PF,PN的斜率分别为,,,证明:为定值.题型11面积最值型【解题攻略】求最值求范围,属于前边知识额综合应用,主要是以下两点要注意注意变量的范围。式子转化为求值域或者求最值的专题复习一些常见的思维:1.可以借助均值不等式求最值。2.分式型,多可以通过构造来求最值,如下几种常见的。分式型:以下几种求最值的基本方法(1)(2)与型,可以设mx+n=t,换元,简化一次项,然后构造均值或者对勾函数求解。(3)型,判别式法,或者分离常数,然后转化分子为一次,再换元求解【典例1-1】已知圆:过点,其长轴长为4.(1)求椭圆的方程;(2)已知为坐标原点,,为椭圆上不重合两点,且,的中点落在直线上,求面积的最大值.【典例1-2】已知抛物线,圆与抛物线有且只有两个公共点.(1)求抛物线的方程;(2)设为坐标原点,过圆心的直线与圆交于点,直线分别交抛物线于点(点不与点重合).记的面积为,的面积为,求的最大值.【变式1-1】已知椭圆C:的离心率为,点在椭圆C上.(1)求椭圆C的标准方程;(2)过点的直线l交椭圆C于P,Q两点,O为坐标原点,求△OPQ面积的最大值.【变式1-2】已知椭圆的上顶点为,右焦点为,点满足.(1)判断点是否在椭圆上,并给出理由;(2)已知与线段相交的直线交椭圆于,(不同于点,)两点,求四边形面积的最大值.题型12切线型【典例1-1】如图,两个椭圆的方程分别为和,(1)已知椭圆的离心率,且,求该椭圆的方程;(2)从大椭圆的右顶点和上顶点分别向小椭圆引切线,若的斜率之积恒为,求的值.【典例1-2】已知椭圆的左、右焦点分别为,焦距为2,上一点到距离之和为6.(1)求的方程;(2)设在点处的切线交轴于点,证明:.【变式1-1】法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆中,离心率,左、右焦点分别是、,上顶点为Q,且,O为坐标原点.(1)求椭圆C的方程,并请直接写出椭圆C的蒙日圆的方程;(2)设P是椭圆C外一动点(不在坐标轴上),过P作椭圆C的两条切线,过P作x轴的垂线,垂足H,若两切线斜率都存在且斜率之积为,求面积的最大值.【变式1-2】.已知点为双曲线的左右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且的面积为.圆的方程是.(1)求双曲线的方程;(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;(3)过圆上任意一点作圆的切线交双曲线于两点,中点为,若恒成立,试确定圆半径.高考练场1.(2023·河南·校联考模拟预测)已知双曲线C:的右焦点为,且C的一条渐近线恰好与直线垂直.(1)求C的方程;(2)直线l:与C的右支交于A,B两点,点D在C上,且轴.求证:直线BD过点F.2.已知双曲线的右焦点为,且点在双曲线C上.(1)求双曲线C的方程;(2)过点F的直线与双曲线C的右支交于A,B两点,在x轴上是否存在不与F重合的点P,使得点F到直线PA,PB的距离始终相等?若存在,求出点P的坐标;若不存在,请说明理由.3.已知椭圆的离心率为,点在短轴上,且.(1)求的方程;(2)若直线与交于两点,求(点为坐标原点)面积的最大值.4.(2023·四川成都·校联考一模)已知椭圆的左、右焦点分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论