版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市开州区2023年数学八年级第一学期期末学业水平测试试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,数轴上点N表示的数可能是()A. B. C. D.2.已知=,=,则的值为()A.3 B.4 C.6 D.93.为了能直观地反映我国奥运代表团在近八届奥运会上所获奖牌总数变化情况,以下最适合使用的统计图是()A.条形统计图 B.扇形统计图 C.折线统计图 D.三种都可以4.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°5.由下列条件不能判定为直角三角形的是()A. B.C. D.6.如图,已知,下列结论:①;②;③;④;⑤;⑥;⑦.其中正确的有()A.个 B.个 C.个 D.个7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°9.如图,,,,下列条件中不能判断的是()A. B. C. D.10.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a) B.x2+a2+2axC.(x-a)(x-a) D.(x+a)a+(x+a)x二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,,,点是第一象限内的点,且是以为直角边的等腰直角三角形,则点的坐标为__________.12.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).13.若分式有意义,则的取值范围是__________.14.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;15.若,则的值为__________.16.点A(2,-3)关于x轴对称的点的坐标是______.17.如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=5,则S1+S5=_____.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)18.实数的平方根是____________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上.且,,的长分别是二元一次方程组的解().(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点,重合),过点的直线与轴平行,直线交边或边于点,交边或边于点.设点的横坐标为,线段的长度为.已知时,直线恰好过点.①当时,求关于的函数关系式;②当时,求点的横坐标的值.20.(6分)已知如图1,在中,,,点是的中点,点是边上一点,直线垂直于直线于点,交于点.(1)求证:.(2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.21.(6分)化简:(1);(2).22.(8分)(1)计算:(2)观察下列等式:=1-;=-;=-;……,探究并解方程:+=.23.(8分)如图,矩形中,点是线段上一动点,为的中点,的延长线交BC于.(1)求证:;(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.24.(8分)已知在平面直角坐标系中的位置如图所示,将向右平移5个单位长度,再向下平移3个单位长度得到.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的;(2)直接写出各顶点的坐标______,______,______.(3)在轴上找到一点,当取最小值时,点的坐标是______.25.(10分)如图,在平面直角坐标系内,点O为坐标原点,经过A(-2,6)的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为1.(1)求直线AD的解析式;(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y(y≠0),求y与m之间的函数关系式并直接写出相应的m的取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.26.(10分)计算①②
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意可得2<N<3,即<N<,在选项中选出符合条件的即可.【详解】解:∵N在2和3之间,∴2<N<3,∴<N<,∵,,,∴排除A,B,D选项,∵,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.2、D【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【详解】∵=,=,
∴=(3a)2÷3b=36÷4=9,
故选D.【点睛】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.3、C【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.【详解】为了直观地表示我国体育健儿在最近八届夏季奥运会上获得奖牌总数的变化趋势,结合统计图各自的特点,应选择折线统计图.故选C.【点睛】本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.4、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x
∵AC=DC=DB
∴∠CAD=∠CDA=2x
∴∠ACB=180°-2x-x=105°
解得x=25°.
故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5、C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;C、∵()2+()2≠()2,故不能判定是直角三角形;D、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确.故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、C【分析】利用得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵∴故①正确;②∵∴即:,故②正确;③∵∴;∴即:,故③正确;④∵∴;∴,故④正确;⑤∵∴,故⑤正确;⑥根据已知条件不能证得,故⑥错误;⑦∵∴;∴,故⑦正确;故①②③④⑤⑦,正确的6个.故选C.【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.7、D【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.8、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.9、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.10、C【详解】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x,故选C.二、填空题(每小题3分,共24分)11、或【解析】设C的点坐标为,先根据题中条件画出两种情况的图形(见解析),再根据等腰直角三角形的性质、三角形全等的判定定理与性质、点坐标的定义分别求解即可.【详解】设C的点坐标为由题意,分以下两种情况:(1)如图1,是等腰直角三角形,过点A作轴,过点C作x轴的垂线,交DA的延长线于点E则又则点C的坐标为(2)如图2,是等腰直角三角形,过点A作轴,过点C作轴则同理可证:则点C的坐标为综上,点C的坐标为或故答案为:或.【点睛】本题考查了三角形全等的判定定理与性质、等腰直角三角形的性质、点的坐标等知识点,依据题意,正确分两种情况并画出图形是解题关键.12、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13、x≠1【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14、AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,
∴BD-CD=CE-CD,
∴BC=DE,
①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).15、9【解析】分析:先将化为,再将代入所化式子计算即可.详解:∵,∴=====9.故答案为:9.点睛:“能够把化为”是解答本题的关键.16、(2,3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17、1【分析】如图,连接MQ,作MG⊥EC于G,设PC交BM于T,MN交EC于R.证明△ABC≌△MBQ(SAS),推出∠ACB=∠BQM=90°,由∠PQB=90°,推出M,P,Q共线,由四边形CGMP是矩形,推出MG=PC=BC,证明△MGR≌△BCT(AAS),推出MR=BT,由MN=BM,NR=MT,可证△NRE≌MTP,推出S1+S1=S3=1.【详解】解:如图,连接MQ,作MG⊥EC于G,设PC交BM于T,MN交EC于R.∵∠ABM=∠CBQ=90°,∴∠ABC=∠MBQ,∵BA=BM,BC=BQ,∴△ABC≌△MBQ(SAS),∴∠ACB=∠MQB=90°,∵∠PQB=90°,∴M,P,Q共线,∵四边形CGMP是矩形,∴MG=PC=BC,∵∠BCT=∠MGR=90°,∠BTC+∠CBT=90°,∠BQM+∠CBT=90°,∴∠MRG=∠BTC,∴△MGR≌△BCT(AAS),∴MR=BT,∵MN=BM,∴NR=MT,∵∠MRG=∠BTC,∴∠NRE=∠MTP,∵∠E=∠MPT=90°,则△NRE≌MTP(AAS),∴S1+S1=S3=1.故答案为:1.【点睛】本题考查全等三角形的判定和性质、矩形的性质,解题的关键是三组三角形全等,依次为:△ABC≌△MBQ,△MGR≌△BCT,△NRE≌MTP.18、【分析】直接利用平方根的定义计算即可.【详解】∵±的平方是,∴的平方根是±.故答案为±.【点睛】本题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.三、解答题(共66分)19、(1)A(3,3),B(6,0);(2)当时,;(3)满足条件的P的坐标为(2,0)或【分析】(1)解方程组得到OB,OC的长度,得到B点坐标,再根据△OAB是等腰直角三角形,解出点A的坐标;(2)①根据坐标系中两点之间的距离,QR的长度为点Q与点R纵坐标之差,根据OC的函数解析式,表达出点R坐标,根据△OPQ是等腰直角三角形得出点Q坐标,表达m即可;②根据直线l的运动时间分类讨论,分别求出直线AB,直线BC的解析式,再由QR的长度为点Q与点R纵坐标之差表达出m的函数解析式,当时,列出方程求解.【详解】解:(1)如图所示,过点A作AM⊥OB,交OB于点M,解二元一次方程组,得:,∵,∴OB=6,OC=5∴点B的坐标为(6,0)∵∠OAB=90°,OA=AB,∴△OAB是等腰直角三角形,∠AOM=45°,根据等腰三角形三线合一的性质可得,∵∠AOM=45°,则∠OAM=90°-45°=45°=∠AOM,∴AM=OM=3,所以点A的坐标为(3,3)∴A(3,3),B(6,0)(2)①由(1)可知,∠AOM=45°,又PQ⊥OP,∴△OPQ是等腰直角三角形,∴PQ=OP=t,∴点Q(t,t)如下图,过点C作CD⊥OB于点D,∵时,直线恰好过点,∴OD=4,OC=5在Rt△OCD中,CD=∴点C(4,-3)设直线OC解析式为y=kx,将点C代入得-3=4k,∴,∴,∴点R(t,)∴故当时,②设AB解析式为将A(3,3)与点B(6,0)代入得,解得所以直线AB的解析式为,同理可得直线BC的解析式为当时,若,则,解得t=2,∴P(2,0)当时,,若,即,解得t=10(不符合,舍去)当时,Q(t,-t+6),R(t,)∴若,即,解得,此时,综上所述,满足条件的P的坐标为(2,0)或.【点睛】本题考查了一次函数与几何的综合问题,解题的关键是综合运用函数与几何的知识进行求解.20、(1)证明见解析;(2)证明见解析.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21、(1);(2)【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.【详解】(1);(2).【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22、(1);(2).【分析】(1)根据除法法则,先把除法统一成乘法,再约分;(3)方程左边利用拆项法变形,再按一般分式方程解答即可.【详解】(1)==;(2);,方程整理,得,方程两边同时乘以,得:,去括号,得,解得,检验:当时,,所以原分式方程的解为.【点睛】本题考查了分式的乘除混合运算以及解分式方程,解第(2)题的关键学会拆项变形.注意解分式方程要检验.23、(1)证明见解析;(2)PD=8-t,运动时间为秒时,四边形PBQD是菱形.【分析】(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.【详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O为BD的中点,∴OB=OD,在△POD与△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四边形PBQD是菱形,∴BP=PD=8-t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形.【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.24、(1)见解析;(2),,;(3)【分析】(1)利用点平移的坐标变换规律确定A1、B1、C1的位置,然后用线段顺次连接即可;(2)根据(1)中得到的图形写出A1、B1、C1的坐标即可;(3)作A点关于x轴的对称点A′,连接A′A1交x轴于M,如图,从而得到M点的坐标.【详解】.解:(1)如图,为所作;(2),,;(3)作点关于轴的对称点,连接交轴于,如图,点的坐标为.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.本题也考查了轴对称-最短距离问题.25、(1)y=2x+10;(2)y=m+3(-2<m<4);(3)存在,点F的坐标为(,0)或(-,0)或(-,0)【分析】(1)根据直线AB交x轴正半轴于点B,交y轴于点C,OB=OC,设出解析式为y=-x+n,把A的坐标代入求得n的值,从而求得B的坐标,再根据三角形的面积建立方程求出BD的值,求出OD的值,从而求出D点的坐标,直接根据待定系数法求出AD的解析式;(2)先根据B、A的坐标求出直线AB的解析式,将P点的横坐标代入直线AB的解析式,求出P的总坐标,将P点的总坐标代入直线AD的解析式就可以求出E的横坐标,根据线段的和差关系就可以求出结论;(3)要使△PEF为等腰直角三角形,分三种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版房屋买卖合同:购房者与开发商之间的购房权益、交付时间等详细约定
- 2024年标准油漆施工合作合同版B版
- 2024年科研成果保密合同
- 正装复合模装课程设计
- 2024年漳州卫生职业学院单招职业适应性测试题库带答案
- 完善财务报告的透明度要求计划
- 商城服务员工作总结
- 安防行业顾问工作总结
- 分析仓库工作中的服务意识计划
- 2025年中考英语一轮复习之主谓一致
- 2024-2025学年深圳市初三适应性考试模拟试卷历史试卷
- 广东省深圳市2023-2024学年高一上学期期末考试物理试题(含答案)3
- 常见生产安全事故防治PPT课件
- 粉末涂料使用说明
- 玻璃瓶罐的缺陷产生原因及解决方法63699
- 赞比亚矿产资源及矿业开发前景分析
- 高层住宅(23-33层)造价估算指标
- 大型储罐吊装方案
- “千师访万家”家访记录表(共2页)
- 海拔高度与气压、空气密度、重力加速度对照表
- 《青田石雕》教学设计
评论
0/150
提交评论