下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课程:概率论与数理统计实验日期:报告日期:专业班级:姓名:学号:实验内容:用蒙特卡洛方法估计积分值要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。目的:(1)能通过MATLAB或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用MATLAB对样本进行基本统计,从而获取数据的基本信息;(3)能用MATLAB熟练进行样本的一元回归分析。1用蒙特卡洛方法估计积分,和的值,并将估计值与真值进行比较。1)仍是用均匀分布来估计此积分的大小,g(x)=xsinx,=1/().x>0.分别取10个估计值h(j),求得估计值的均值p,对照积分的真实值求得估计均方误差f。Matlab程序代码如下:s=0;m=0;f=0;r=0;n=50;h(1:10)=0;forj=1:10fori=1:na=unifrnd(0,pi/2,n,1);x=sort(a);y=pi/2*mean(x.*sin(x));s=s+y;endb=s./n;fprintf('b=%.4f\n',b);h(j)=b;s=0;m=m+b;endp=m./10z=1forj=1:10r=(h(j)-z).^2;f=f+r;endf=f./10;fprintf('f=%.6f\n',f)221,表明估计结果与理论值非常接近。2)I==1/2*g(x)=e为标准正态分布的概率密度.分别取10个估计值h(j),求得估计值的均值p,对照积分的真实值求得估计均方误差f。Matlab程序代码如下:s=0;m=0;f=0;n=50;r=0;h(1:10)=0;forj=1:10fori=1:na=normrnd(0,1,1,n);x=sort(a);z=(sqrt(2.*pi)).*exp(-x(i).^2./2);s=s+z;endb=(s./n)./2;fprintf('b=%.4f\n',b);h(j)=b;s=0;m=m+b;endp=m./10z=sqrt(pi)./2forj=1:10r=(h(j)-z).^2;f=f+r;endf=f./10;fprintf('f=%.6f\n',f)结果如下:322,估计结果与真实值非常接近。3)m=10000;sum=0;n=50;D=0;X=unifrnd(-1,1,n,m);Y=unifrnd(-1,1,n,m);fori=1:na=0;forj=1:mif(X(i,j)^2+Y(i,j)^2<=1)Z(i,j)=exp(X(i,j)^2+Y(i,j)^2);a=a+Z(i,j);endendS(i)=a/m;sum=sum+S(i);endI=sum/n*4fori=1:nD=D+(S(i)*4-pi*(exp(1)-1))^2;endd=D/n2用蒙特卡洛方法估计积分和的值,并对误差进行估计。1)此积分采用的是均匀分布。g(x)=,=1.x>0.分别取10个估计值h(j),求得估计值的均值p,对照积分的真实值求得估计均方误差f。Matlab程序代码如下:s=0;m=0;f=0;r=0;n=50;h(1:10)=0;forj=1:10fori=1:na=unifrnd(0,1,n,1);x=sort(a);y=exp(x(i).^2);s=s+y;endb=s./n;fprintf('b=%.4f\n',b);h(j)=b;s=0;m=m+b;endp=m./10forj=1:10r=(h(j)-p).^2;f=f+r;endf=f./9;fprintf('f=%.6f\n',f)结果如下:22,以平均值作为真实值,均方误差也比较小。2)n=1000;m=100;sum=0;S=0;I=0;x=unifrnd(-2,2,m,n);y=unifrnd(-2,2,m,n);forj=1:ms=0;fori=1:nifx(j,i)^2+y(j,i)^2<=4s=s+16/sqrt(1+x(j,i)^4+y(j,i)^2);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司打包收购合同范例
- 安置房工程合同范例
- 国税劳务合同范例
- 钢板合同范例合同范例
- 山东艺术设计职业学院《电子商务物流》2023-2024学年第一学期期末试卷
- 山东医学高等专科学校《机械制造基础B》2023-2024学年第一学期期末试卷
- 农村院子合同范例
- 山东药品食品职业学院《产品表现技法》2023-2024学年第一学期期末试卷
- 单位公房买卖合同范例
- 工装家具加工合同范例
- 物业经理晋升述职报告
- 重症医学科培训与考核制度
- 2024年农村土地整治承包协议
- 北京市2024年中考道德与法治真题试卷(含答案)
- 银行信贷管理风险控制制度
- 国企内部纪检监察培训
- 室内装饰工程施工方案
- 城管执法程序培训课件
- 医护人文素养培训
- 2024 年广西公需科目一带-路全题库参考答案
- 2024年人教版八年级英语上册期末考试卷(附答案)
评论
0/150
提交评论