人教版六年级数学上册第五单元-圆教案_第1页
人教版六年级数学上册第五单元-圆教案_第2页
人教版六年级数学上册第五单元-圆教案_第3页
人教版六年级数学上册第五单元-圆教案_第4页
人教版六年级数学上册第五单元-圆教案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版六年级数学上册第五单元圆

新知识点

‘认识圆

圆的周长

圆的面积

、认识扇形

教学要求

1.联系生活实际,引导学生通过观察实物、模型,操作学具和画圆等实践活动,经历从实

物抽象到图形,再到认识圆的各部分名称的过程,使学生认识圆的特征。

2.通过组织学生观察和操作等活动,经历“猜想一验证一归纳”的过程,认识圆周率;启

发学生利用已有的知识和经验,在掌握圆的周长和面积计算公式的过程中,发展初步的空间

观念并能正确、灵活地应用计算公式解决简单的实际问题。

3.在教学活动中,使学生感受探究问题的乐趣,增强应用意识;通过介绍圆周率等数学史

料,受到爱国主义的教育。

教学建议

1.使学生在操作中加深对圆的认识。

圆是最常见的图形之一,它是最简单的曲线图形之一。学生已经对圆有了初步的感性认

识,教学时,可以出示一组图(5个正多边形和1个圆),引导学生观察、思考圆和我们以前学

过的平面图形一一长方形、正方形、三角形等有什么不同。使学生在分类的过程中,体会到

圆是由封闭的曲线围成的平面图形。当正多边形的边数越来越多时,这个正多边形就会越来

越接近圆,这部分内容的教学过程要做到不拖沓,点到为止。关于画圆,可以分三个层次,第一

个层次,让学生借助一些圆形实物画圆,这样画圆有两个目的:其一,从用眼看,用嘴说,到动

手画,让学生逐步感知圆的特点;其二,为进一步认识圆心创造研究材料。第二个层次,为学生

认识圆的半径、直径创造研究材料。第三个层次是用圆规画圆,体会圆心与圆的位置之间的

关系,半径与圆的大小之间的关系等。在学生操作时,老师要给学生指出操作的目的是什么,

把动手与动脑结合起来。

2.该推理时要推理,不要一味地从操作学具做起。

教学“认识圆”,离不开学生的实践活动,让学生在“画一画”“折一折”“练一练”等

活动中认识圆的特征及各部分的名称。但这并不是说,学生的所有认识都要从动手开始,该推

理时就要推理,让学生充分利用所学知识,建立起知识之间的联系,如对“同一个圆中,直径的

长度是半径的2倍”的认识。

3.注意数学思想与方法的综合应用。

本单元蕴含的数学思想和方法主要有:化曲为直的思想方法、极限的思想方法、转化的

思想方法、对应的思想方法、等积变形的思想方法;归纳的思想方法及猜想与实验验证等。

教学过程中要灵活运用这些数学思想和方法,得出最佳方案。

课时安排

1认识圆...........................................................2课时

2圆的周长..........................................................2课时

3圆的面积..........................................................3课时

4认识扇形...........................................................1课时

整理和复习............................................................1课时

确定起跑线............................................................1课时

1认识圆

第一课时

教学内容

认识圆

教材第57、第58页的内容及练习十四的第广5题。

教学要求

1.通过动手操作、观察、思考等教学活动,认识圆并掌握圆的特征。

2.让学生理解在同一圆内直径与半径的关系,学会用圆规画圆。

3.初步渗透化曲为直的数学方法和极限的数学思想。

重点难点

重点:直观地认识圆的特征,学会用圆规画圆。

难点:明确圆心与圆的位置之间的关系,半径与圆的大小的关系。

教具学具

课件,实物投影,一些较硬的纸片,圆规。

教学过程

一导入

1.出示一组平面图形(5个正多边形和一个圆)。

提问:观察下面的图形,你能把它们分类吗?

2.圆与正多边形的关系。

提问:你是以什么为标准进行分类的?

(学生可能以边的数量为分类标准)

提问:让我们想象一下,当正多边形的边数越来越多时,它就会越来越接近什么图形?

(学生回答后,用电脑脸证)

二教学实施

1.介绍“神奇的圆”。

老师可以查阅一些资料。例如:圆是一种看来简单实际上却很神奇的图形。古代人最早

是从太阳,阴历十五的月亮得到圆的概念。约一万八千年前的山顶洞人在兽牙上打的孔是圆

的,他们还发现圆圆的木头可以滚动,搬动重物时可以省力;大约六千年前,美索不达米亚人

制成了第一个轮子;大约四千年前,人们发明了车子。古埃及人认为圆是神赐予的。我国古代

伟大的思想家墨子在描述圆时说到“一中同长也”,也就是说圆有一个圆心,圆心到圆周的长

都相等。

2.初步感知圆。

老师:圆是如此的神奇,你能想办法在纸上画一个圆吗?

学生借助圆形的实物,画圆并剪下来。

组织交流:画圆与画用线段围成的图形有什么不同?

学生自由发言,初步体会圆的特征一一由曲线围成的图形。

3.认识圆各部分的名称、特征。

(1)认识圆心。让学生拿出剪下的圆形纸片一,对折、打开,换个方向再对折、打开,反复几

次,你发现了什么?

引出圆心,让学生在圆形纸片上画出圆心,并用字母。表示出来。

板书:圆心0

(2)认识直径。

请同学们用直尺量一量刚才折的每一条折痕的长度,你又发现了什么?

提问:谁能说一说直径是一条什么样的线段?在纸片上画出一条直径,并用字母d标出。

板书:通过圆心,并且两端都在圆上的线段叫做直径,一般用字母d表示。

(3)认识半径。

再请同学用直尺量一量从圆心到圆上任意一点的距离,你还能发现什么?

老师板书半径的定义。

老师:通过以上学习,我们已经初步认识了圆心、半径和直径。请同学们看教材,加深对

这三个概念的理解。

4.半径与直径的关系。

出示问题:

(1)在同一个圆里,能画出多少条半径和直径?(无数条)

(2)在同一个圆里,所有半径的长度都相等吗?直径呢?(相等)

(3)在同一个圆里,半径和直径有什么关系?

板书:2r尸多,

5.用圆规画圆。

老师:人们从实践中知道了同一个圆内所有的半径都相等这个特点后,才发明了圆规,并

用来画圆。我国大约在两千年前,就能画出地地道道的圆来了。

学生自学用圆规画圆的方法,并尝试画圆。

概括用圆规画圆的方法:

(1)先点个点儿,确定圆心。

(2)张开圆规两脚,针尖对准圆心。

(3)旋转一周,标出圆心、半径及直径。

老师说明并示范用圆规画圆的方法,总结画圆时的两个不动。

(1)有针尖的一端不动(圆心不动)。

(2)圆规的两脚不动(半径不变)。

提问:用圆规画圆时,圆的位置是由什么决定的?(圆心)

圆的大小是由什么决定的?(半径)

6.反馈练习。

(1)完成教材第58页“做一做”的第1题。

学生完成后,说明理由,巩固半径和直径的概念。

(2)完成教材第58页“做一做”的第2题。

在完成第2题时,要引导学生想到两端都在圆上的线段中,直径是最长的一条。学生试着

在没有标出圆心的圆中量出直径的长,以便掌握测量方法。

(3)完成教材第60页练习十三的第「5题。

学生独立完成,老师巡视指导。

三课堂作业新设计

1.填表。

国的直径(加2.4cn>0.5m

国的华径(亦1.6dr00.8cn>

2.按照要求画图。

(1)画出半径是3厘米的圆。

(2)画出直径是3厘米的圆。

(3)在右图中画出两个大小不同的圆,使画出的两个圆的直径之和等于已知圆的直径。

四思维训练

看图填空。(单位:厘米)

-----------12-----------

上图中圆的直径是()厘米,半径是()厘米,长方形的周长是()厘米,

长方形的面积是()平方厘米。

参考答案

课堂作业新设计

1.1.2cm3.2dm0.25m1.6cmgdm+'

2.略

思维训练

423248

教材习题

教材第58页“做一做”

1.略

2.略

练习十三

1.略

2.6cm3cm10cm3.5cm

3.略

4.略

5.0.480.432.840.525.2

板书设计

认识圆

圆:一条线段绕着它固定的一端在平面上旋转一周时,它的另一端就会画出一条封闭的

曲线,这条封闭的曲线叫做圆。

圆的中心点做圆心,用字母表示;连接圆心和圆上任意一点的线段叫做半径,用字母

arn表示;通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

d=Q.r

第二课时

教学内容

圆的对称性,用圆设计漂亮的图案

教材第59页的内容及练习十三的第6~10题。

教学目标

1.通过观察、操作等活动,进一步认识轴对称图形和对称轴的概念。知道圆是轴对称图

形,圆有无数条对称轴。

2.让学生能画出轴对称图形的对称轴,能根据对称轴画出与给定图形对称的图形。

3.培养学生的空间观念和探索精神。

重点难点

重点:能准确找出学过的平面图形的对称轴,能根据对称轴画出与给定图形对称的图形。

难点:画出由多个圆组成的组合图形的对称轴。

教具学具

画好的圆若干个,实物投影。

教学过程

一导入

课前布置学生收集轴对称图形。

老师将学生收集到的轴对称图形连同自己准备的蜻蜓、天平等轴对称图形贴到黑板上。

老师:同学们,黑板上这些美丽的图案都是轴对称图形,今天这节课,我们就来学习轴对

称图形。

板书课题:轴对称图形。

二教学实施

1.圆的对称性。

老师:我们学过的长方形、正方形都是轴对称图形,我们刚刚认识的圆是轴对称图形吗?

为什么?

学生动手把圆对折,确定圆是轴对称图形。

结论:圆是轴对称图形,折痕所在的直线就是圆的对称轴。

追问:一个圆有多少条对称轴?

(学生展开讨论)

出示两个圆,学生在图中分别画出两个圆的对称轴。

老师强调:对称轴要用虚线表示。

追问:你能画出几条呢?

板书:圆有无数条对称轴。

2.用圆设计图案。

小组合作,用圆规和尺子,设计美丽的图案,然后集体欣赏。

3.练习。

(1)完成教材第61页练习十三的第6题。

引导学生回忆学过的轴对称图形有正方形、长方形、等腰三角形、等边三角形、等腰梯

形和圆等。

只有一条对称轴的:等腰三角形、等腰梯形

有两条对称轴的:长方形

有三条对称轴的:等边三角形

有四条对称轴的:正方形

有无数条对称轴的:圆

(2)完成第61页教材练习十三的第7题。

可以让学生先描点再画线,画出与给定图形对称的图形。

(3)完成教材第61页练习十三的第8~10题。

三课堂作业新设计

1.填空。

(1)如果一个图形沿着()对折,两侧的部分能够(),这个图形就是轴对称图

形。折痕所在的这条直线就叫做()o

⑵圆是()图形,它有()条对称轴。

2.选择。(把正确答案的序号填在括号里)

(1)下列各图形中,()不是轴对称图形。

A.长方形B.正方形C.平行四边形D.圆

(2)圆有()条对称轴。

A.1B.2C.无数D.3

四思维训练

1.下面各图形分别有几条对称轴?请你画出来。

2.请你用直尺和圆规设计一个轴对称图形。

参考答案

课堂作业新设计

1.(1)一条直线完全重合对称轴(2)轴对称无数

2.(1)C(2)C

思维训练

1.一条一条三条画图略

2.略

教材习题

练习十三

6.略

7.略

8.无数条无数条2条1条3条2条

9.直径:18+3=6(cm)周长:(18+6)X2=48(cm)

10.略

板书设计

轴对称图形

圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条直径,所以圆有无数

条对称轴。一条直线是不是圆的对称轴,可以通过观察这条直线是否通过圆心来判断。

用圆规和直尺设计漂亮的图案。

2圆的周长

第一课时

教学内容

圆的周长

教材第62~64页的内容。

教学目标

1.使学生直观认识圆的周长,掌握圆的周长的计算公式。

2.通过对圆周率n的值的探索,培养学生的联想能力和初步的逻辑思维能力。

3.介绍我国数学家对圆周率研究的贡献,对学生进行爱国主义教育和辩证唯物主义的启

蒙教育。

重点难点

重点:掌握圆的周长的计算公式。

难点:圆的周长公式的推导。

教具学具

投影片,直尺,细线,绳子和圆片。

教学过程

一导入

1.老师用投影片出示下面两个图形,让学生找出直径和半径。

提问:什么是圆的直径?什么是半径?在一个圆中直径和半径的长度有什么关系?

2.老师用投影片出示下面的图形。

9米

15米9米

提问:什么是长方形的周长?什么是正方形的周长?它们的计算结果用的是什么计量单

位?

学生指出这两个图形的周长,并进行计算。

二教学实施

1.圆的周长的含义。

(1)让学生拿出发的圆形纸片,平放在桌面上,试着指一指圆形纸片的周长,注意起点和

终点。

(2)指名学生指一指圆的周长。

(3)说明围成圆的曲线的长度叫做圆的周长。

2.讨论绳测法和滚动法,渗透化曲为直的思想。

学生用手中的直尺和细线等学具试着测量手中圆形纸片的周长。

⑴绳测法。

用线绕圆的一周,从这一点开始,再到这一点,多余部分剪掉,拉直,这条线段的长度是谁

的长度?

(2)滚动法。

让圆滚动一周,从直尺的0刻度到滚动一周的终点,这段距离是谁的长度?

(3)用绳测法和滚动法,可以测量出手中圆形纸片的周长,这个圆的周长是多少呢?

3.探究圆的周长与什么有关系。

(1)讨论圆的周长与什么有关系。

屏幕演示:直径是1分米的圆,滚动了一周,这段距离就是这个圆的周长;直径是0.8分米

的圆滚动一周的距离就是这个圆的周长。

(2)小结:直径长,周长长;直径短,周长短。由此看出圆的周长和直径有关系。

板书:圆的周长直径

4.探究圆的周长与它的直径有什么关系。

学生分组实验,测量圆的周长,计算周长是直径的多少倍。每组把量得的数据填在表格里。

局长

—的比值4

物品名称,周长♦亘巨直径

(保留短位小数好

r

*

指名说一说得出的结果,老师把这些数据写在黑板上。引导学生进行讨论,使学生了解到

圆的周长总是直径的3倍多一些。

老师归纳:任何圆的周长和直径的比值都是3.14多一些,它们的比值是一个固定不变的

数。我们把圆的周长和直径的比值叫做圆周率。

5.介绍圆周率。

(1)阅读教材第63页的“你知道吗?”。

(2)老师说明:圆周率用字母n(pdi)表示,它是一个无限不循环小

数,Ji=3.1415926535……在实际应用中一般只取它的近似值,即n不3.14。

6.归纳公式。

如果用,表示圆的周长,那么:d或C=2nr。

7.计算圆的周长。

老师出示例1,指名读题,然后板书解题过程。

板书:2X3.14X33=207.24(cm)207.24cm、2m

lkm=1000m

1000+2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

三课堂作业新设计

1.直接写出下面各题的得数。

3.14X1=3.14X2=3.14X3=

3.14X4=3.14X5=3.14X6=

3.14X7=3.14X8=3.14X9=

2.求下面各圆的周长。

3.填表。

半径r(m)直径"(m)周长6?(m)

4

1.2

12.56

4.一辆汽车的车轮直径是1.02米,车轮转动10周前进多少米?(得数保留一位小数)

四思维训练

从一张边长为6厘米的正方形纸上剪下一个最大的圆,这个圆的周长是多少厘米?

参考答案

课堂作业新设计

1.3.146.289.4212.5615.718.8421.9825.1228.26

2.12.56cm18.84cm50.24cm

3.825.120.63.76824

4.32.0米

思维训练

18.84厘米

教材习题

教材第64页“做一做”

1.18.84cm18.84cm31.4cm

2.1.5m

板书设计

圆的周长

任意一个圆的周长与它的直径的比都是一个固定的数,我们把它叫做圆周率。用字

母贝表示。圆周率是一个无限不循环小数,如无特殊要求,圆周率n一般取3.14o

根据圆周率的定义可以得知:圆的周长=直径X圆周率=半径X2X圆周率。

2X3.14X33=207.24(cm)207.24cm«2m

lkm=1000m

10004-2=500(1)

答:这辆自行车轮子转1圈,大约可以走2m。骑车从家到学校,轮子大约转了500圈。

第二课时

教学内容

圆的周长练习课

教材第65、第66页的练习十四。

教学要求

1.通过练习,巩固对圆的周长公式的理解和掌握,能熟练应用圆的周长公式解决问题。

2.进一步培养学生应用公式解题的能力。

3.培养学生仔细观察、积极思考的学习习惯。

重点难点

灵活应用圆的周长公式解题。

教具学具

实物投影。

教学过程

一导入

1.老师:什么是圆的周长?什么是圆周率?圆的周长的计算公式是什么?

板书页d(7=2nr

2.完成下列口算练习。

3.14X1=3.14X2=3.14X3=3.14X4=

3.14X5=3.14X6=3.14X7=3.14X8=

3.14X9=3.14X10=3.14X20=3.14X100=

要求学生先口算出结果,再熟记。

二教学实施

1.完成教材第65页练习十四的第1、第2题。

(1)学生独立完成,写在练习本上。

(2)集体订正。

(3)提醒学生正确应用公式。

已知半径,求周长:nr

已知直径,求周长:end

2.完成教材第65页练习十四的第3题。

(1)指名读题。

(2)独立完成。

(3)学生板演,说说自己使用的方法。

已知周长,求直径:n

提问:如果已知周长,求半径,用什么方法呢?

板书n4-2

3.完成教材第65页练习十四的第4题。

(1)指名读题。

(2)说说怎样求出规定时间内,分针的尖端所走的路程。

点拨:求规定时间内,分针的尖端所走的路程就是求以分针(20cm)为半径的圆的周长。

30分钟所走的路程:3.14x20x2x整=62.8(cm*

60

45分钟所走的路程:3.14x20x2x祟94.2(cm>

60

(3)学生接着完成后面的问题。

4.完成教材第65、第66页练习十四的第5~11题。

学生独立完成,集体订正。

三课堂作业新设计

1.填空。

(1)圆的周长总是它直径的()倍。

(2)用,表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长的计算公式可以写成

()或()。

(3)小圆的半径是大圆半径帽,那么小圆的直径是大圆直径的(),小圆的周长是大圆周

长的()。

(4)用周长是2分米的正方形纸片剪成一个最大的圆,这个圆的周长是()厘米。

2.求下面各图形的周长。

3.一个圆形蓄水池,从里边量周长是50.24米。它的半径是多少米?

4.一个半圆形花坛,外围周长是51.4米。这个花坛的直径是多少米?

四思维训练

看图填空。

I------12cm——4

左图中两个圆的面积相等,圆心分别是4、仇半径是()厘米,直径是()

厘米,每个圆的周长是()厘米,长方形的周长是()厘米。

参考答案

课堂作业新设计

1.(1)n{2}C=ndO2^r弼:(4)15.7。

2.12.56cm2.57m。

3.8米。

4.20米,

思维训练“

4825.1240。

教材习题。

练习十四”

1.31.4米"

2.20.724米。

3.1.2米。

5.15X2X3.14X3=282.6(m)15X2X3.14+2=47.1弋47(根)

6.50.24m=5024cm5024+(40X3.14)=40(周)

7.(1)1612.56(2)9.4221

8.100+4+2=12.5(厘米)

9.50X4+50X3.14+2=278.5(厘米)=2.785(米)

10.2X5X3.14=31.4(厘米)

11/第一组:3.14X7+7X2=35.98(cm)

第二组:3.14X7+7X4=49.98(cm)

第三组:3.14X7+7X8=77.98(cm)发现略

3圆的面积

第一课时

教学内容

圆的面积

教材第67、第68页的内容。

教学要求

1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

2.培养学生运用转化的思想解决问题的能力。

重点难点

重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

难点:理解圆的面积公式的推导过程。

教具学具

实物投影,各种图形的纸片。

教学过程

一导入

1.我们学过哪些平面图形的面积公式?

2.长方形、平行四边形和三角形的面积公式分别是什么?

3.平行四边形的面积公式是如何推导的?

小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所

学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化

的思想研究圆的面积。

二教学实施

1.明确圆的面积的概念。

(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

(2)圆的大小是由什么决定的?

(3)展示由"曲”变“直”的渐变图。

引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当

我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近

似于我们学过的图形。

2.学生动手操作,推导圆的面积公式。

为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的

三角形,

底是多少?(5)高是多少?(M

MWWWW

条WWWWWWWW

(1)指导学生动手摆学具,并思考几个问题:

你摆的是什么图形?

你摆的图形的面积与圆的面积有什么关系?

所摆图形的各部分相当于圆的什么?

你如何推导出圆的面积?

(2)学生动手摆学具,然后发言。

拼成长方形:

老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

出示教材第67页上面的图加以说明。

拼成的近似长方形的长和宽与圆的各部分有什么关系?

从图中可以看出圆的半径是长方形的长是nr,宽是八

长方形的面积=长乂宽

III

圆的面积="广乂?

如果用S表示圆的面积,那么圆的面积计算公式就是

3.利用公式计算圆的面积。

出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

板书:204-2=10(m)

3.14X102

=3.14X100

=314(m2)

314X8=2512(元)

答:铺满草坪需要2512元.

老师强调指出:列出算式后,要先算平方,再与n相乘。

三课堂作业新设计

1.直接写出得数。

2、32=4?=5J62=72=

82=92=102=0.22=0.12=0.92=

2.求下面各圆的面积。

3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

四思维训练

计算阴影部分的面积。(单位:分米)

参考答案

课堂作业新设计

1.491625364964811000.040.490.81

2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

3.28.26平方分米

4.1.1304平方米

思维训练

3.44平方分米

板书设计

圆的面积

长方形的面积=长乂宽

III

圆的面积=itrXr=JTr

204-2=10(m)

3.14X102

=3.14X100

=314(m2)

314X8=2512(元)

答:铺满草坪需要2512元。

第二课时

教学内容

圆环的面积

教材第68页的内容。

教学要求

1.使学生进一步掌握求圆的面积的方法,学会求圆环的面积的计算方法。

2.培养学生主动研究、探索解决问题的方法的能力。

重点难点

求圆环的面积的计算方法。

教具学具

实物投影,圆环纸片。

教学过程

一导入

1.什么是圆的面积?圆的面积计算公式是什么?

2.求下面各圆的面积。

二教学实施

1.出示例2o

光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6emo圆环的面积是多少?

(1)指名读题。

(2)出示光盘图。

提问:光盘的面积是什么图形的面积?求光盘的面积是求哪部分的面积?怎样求光盘的面

积?

学生回答:光盘的面积是圆环的面积,求光盘的面积就是求圆环的面积。

老师拿出事先做好的教具,演示圆环形成的过程,左手拿着教具,右手把内圆向后推掉,

成为一个圆环,让学生认真观察演示过程,明确从外圆的面积中减去内圆的面积就得到圆环

的面积。

板书:圆环的面积=外圆的面积-内圆的面积

让学生说一说外圆的半径是多少,外圆的面积怎样求,内圆的半径是多少,内圆的面积怎

样求。

2.学生列综合算式解答。

老师巡视,了解学生列算式的情况。

板书:

3.14X6-3.14X22或3.14X(62-22)

=113.04-12.56=3.14X32

=100.48(cm2)=100.48(cm2)

答:圆环的面积是100.48cm-o

3.比较两种方法.

大部分学生用的是第一种方法,即大圆的面积减去小圆的面积。如果有学生用的是第二

种方法,老师要予以表扬。这些学生联系以前学习的乘法分配律,使计算简便。这种计算圆环

面积的方法,不必要求全体学生掌握。

老师归纳出第二种方法的计算公式:

S环="("-/)

其中,A是外圆半径,r是内圆半径。

三课堂作业新设计

1.直接写出得数。

102=2()2=30J402=3.14X3=3.14X2=

11=12=13=14=3.14X5=3.14X4=

15=16=17=18=3.14X6=3.14X8=

2.求下面各图中阴影部分的面积。(单位:分米)

3.铸造厂要生产一种圆环形的钢板。这种环形钢板的内圆半径是6厘米,外圆半径是15

厘米,钢板的面积是多少平方厘米?

4.一个直径为16米的圆形鱼池,鱼池的中心是一个直径为6米的圆形小岛。求鱼池水面

的面积。

四思维训练

计算下图中阴影部分的面积。(单位:分米)

参考答案

课堂作业新设计

1.10040090016009.426.2812114416919615.712.56225

25628932418.8425.12

2.(1)3.14X(6-3z)=84.78(平方分米)

(2)12+2=6(分米)16+2=8(分米)3.14X(8^62)=87.92(平方分米)

3.3.14X(152-6?)=593.46(平方厘米)

4.6+2=3(米)16+2=8(米)3.14X(82-3,)=172.7(平方米)

思维训练

(1)3.14X(64-2)-3.14X(3+2)2=21.195(平方分米)

2

(2)5+5=1*举)10x5■汨,颐=1075(平方分米*

教材习题,

教材第68页嘴一做”

2j

2.3.14X偿)-3.14x(9=1884(01个

板书设计

环形的面积

圆环是指半径不相等的圆,当圆心重合时的两圆之间的部分。注意,在一个大圆内随意剪

去一个小圆是不能形成圆环的。任何一个圆环,已知内圆直径和环宽,求外圆直径应加两个环

宽;已知外圆直径和环宽,求内圆直径,应减去两个环宽。

圆环的面积=外圆的面积-内圆的面积

3.14X62-3.14X2,或3.14X(62-22)

=113.04-12.56=3.14X32

=100.48(cm2)=100.48(cm2)

答:光盘的面积是100.48cm2,

S)?=n(*-?)

A是外圆半径,r是内圆半径。

第三课时

教学内容

圆与正方形的关系及圆的面积练习课

教材第69~74页的内容。

教学要求

1.通过练习,理解和掌握圆的周长和圆的面积的计算公式,能够正确地计算圆的周长和

圆的面积。

2.进一步培养学生的空间观念。

重点难点

正确计算圆的周长和圆的面积。

教具学具

实物投影。

教学过程

一导入

1.口答:分别说出r9的平方值。

2.指名回答有关圆的定义。

3.默写圆的周长和圆的面积的计算公式。

4.完成下面的练习。

(1)一个圆的周长是18.84厘米。这个圆的面积是多少平方厘米?

板演:18.84+3.14+2=3(厘米)

3.14X3=3.14X9=28.26(平方厘米)

(2)一个圆环形花坛的外圆半径是5米,内圆半径是2米。它的面积是多少平方米?

板演:3.14X(5-22)=3.14X21=65.94(平方米)

二教学实施

1.出示例3。

(1)老师读题,帮助学生理解题意。

题中两个图都是由一个正方形和一个圆组成的,通过探索它们之间的关系,研究正方形

和圆的面积关系。

(2)分析问题。

老师:图中的两个圆的半径都是多少?(1m)

左边求的是正方形比圆多的面积,右边求的是圆比正方形多的面积。

左边正方形的边长就是圆的直径。右边正方形的边长小于圆的直径。

(3)解决问题。

小组讨论解决方法并汇报。

由题知左图中正方形的边长就是圆的直径,由图可知:

2X2=4面)

3.14X1M.14(m2)图⑴

4-3.14=0.86(nd

右图中的正方形可以分成两个相同的三角形,它们的底和高分别是正方形的边长,形成

的第三边就是圆的直径。由图可知:

图⑵从图⑵可以看出:

x2xl)x2=2(m2)4

3.14-2=1.14(m2>'

答:左图中正方形与圆之间的面积是0.86m2,右图中圆与正方形之间的面积是1.14m2o~

(4)拓展探究。~

老师:如果两个圆的半径都是r。,

左图:(2至314*户=0一86心

右图:3.14*户6x2rxr)>2^1.14A'

当2=1时,和上面的结果完全一致。

(5)老师引导学生总结圆与正方形的关系。

总结:正方形里面有一个最大的圆,则正方形的边长就是圆的直径。圆里有一个最大的正

方形,则圆的直径是把正方形分成两个相同的三角形后形成的第三边。

2.完成教材第71页练习十五的第1题。

学生先独立完成,再集体订正。订正时让学生说出计算的过程。如第一行,要能说出已知

半径求直径,用dqr计算出直径是4X23(cm),已知半径求面积,用S=nf求出面积是

3.14X42^3.14X16=50.24(cm2)

3.完成教材第71页练习十五的第3题。

(1)学生读题,说出题意。

(2)说说求喷灌的面积就是求什么。(求圆的面积)

自动旋转喷灌装置的射程是10m,指的是什么?(圆的半径)

(3)独立完成计算过程。

板书:3.14X102=3.14><100=314(m2)

4.完成教材第71页练习十五的第2题。

(1)学生独立完成。

(2)集体纠正答案。

(3)老师在巡视过程中检查学生有没有把圆的面积公式和圆的周长公式混淆,检查学生

的书写格式对不对,写没写单位名称。

5.完成教材第73页练习十五的第10题。

(1)学生读题。

(2)分小组讨论怎样计算这个运动场的周长和面积。

(3)点拨学生可以把两个半圆合并成一个整圆计算它的周长和面积。

周长:2X3.14X32+100X2面积:3.14X32、32X2X100

6.指导学生完成教材第74页的第16*题。

(1)学生读题,说出题意。

(2)给学生提供充分的探索时间和空间,让学生分小组亲自探索,做好记录。

(3)学生发言,教师点拨。

围成正方形:31.4+4=7.85(m)7.85X7.85=61.6225(m2)

围成圆形:31.433.1432=5(m)3.14X5=78.5(m2)

78.5>61.6225

所以围成圆形时的面积最大。

三课堂作业新设计

1.直接写出得数。

32=52=12=0.22=0.42=

82=22=92=0.82=0.9=

2.填表。

圆的半径圆的直径圆的周长圆的面积

2cm

18.84m

3.火车主动轮的直径是1.5米,如果平均每分钟转200圈。每分钟前进多少米?

4.用一条10米长的铁丝围着一棵大树绕3圈还余0.58米。这棵大树的直径是多少米?

四思维训练

1.在一个长4米、宽2米的长方形纸板上剪一个最大的圆。这个圆的面积是多少平方米?

2.求涂色部分的面积。(单位:米)

参考答案

课堂作业新设计

1.925490.040.16644810.640.81

2.4cm12.56cm12.56cmJ3m6m28.26m"

3.3.14X1.5X200=942(米)

4.10-0.58=9.42(米)9.42+3+3.14=1(米)

思维训练

1.2+2=1(米)3.14X「=3.14(平方米)

2.3.14X32+4X2-3X3=5.13(平方米)

教材习题

教材第70页做一做

3.14x仔):|24x(24+2)x;x2]=164.16(cm2A

练习十五。

半径+1直径2IS面积口

4cm小8cm-50.24cm2*34567*9

4.5cm49cm-63.585cm2*

3cm川6cm28.26cm8

2040cmw1256cm"

2.31.4cm78.5cm218.84cm28.26cm。

3.3.14x102=314(m2)-'

4.3.14以125.6*3.14)2=1256(cm%

5.3.14x偿)’-3.14x(J=215.875(on2A

6.3.14x62-3.14x(J=84.78(cm2A

7.3.14x12xi+3.14x8xl+(12-8)=35.4(cm)3.14x122-3.14x82=2512(01)2>'

8.略「

9.3.14x(等)16x6=361.40625(mm2/

701.005-384.336=316.669(m2)相差316.669m%

13.62.84-3.144-2=10(m)3.14X(10+2)-3.14X10=138.16(m2)

14.长度314x675x2x>1575x2=24.35(m*

®^:3.14x6.752x|+6.75x2x1.575=92.80(m2>'

15/略

16.,正方形:(31.4+4)2=61.6225(m?)圆:(364+3.14+2)2义3.14=78.5面)

所以围成圆形面积最大

17?因为周长相同时,围成的图形中圆的面积最大,所以蒙古包的房间面积大,根和茎

长得牢,并吸收养分足。

4认识扇形

第一课时

教学内容

认识扇形

教材第75、第76页的内容。

教学要求

1.使学生掌握扇形的组成部分、扇形的特征。

2.进一步培养学生的空间观念。

重点难点

认识扇形。

教具学具

实物投影。

教学过程

一导入

扇贝、扇形藻、折扇,这些物体的名称都含有“扇”字,那什么是扇形呢?

小组讨论,然后集体汇报

二教学实施

认识扇形。

老师拿出圆规和直尺,先画一个虚线圆,在圆上取4、8两点,再用实线画48两点间的

部分。

《弧

接着老师指出:圆上48两点之间的部分叫做弧,读作“弧。一条弧和经过这条弧

两端的两条半径所围成的图形叫做扇形。用彩笔把扇形部分涂上色,强调涂色部分就是扇形。

让学生在练习本上画出扇形,并指名说一说什么是扇形。

老师:我们看到扇形是由两条半径和一条弧围成的,谁能说一说扇形和三角形有什么不

同?使学生认识到:三角形是由三条线段围成的,而扇形中有一条不是线段而是弧,这条弧是

圆的一部分。

老师在上面图形的基础上标出圆心角,指出:顶点在圆心上的角叫做圆心角。

提问:圆心角是由什么组成的?顶点在什么上?

学生要认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。

使学生明确:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,

扇形就越大。

三课堂作业新设计

L教材第76页练习十六第1题。

2.教材第76页练习十六第2题。

3.教材第76页练习十六第3题。

四思维训练

教材第76页练习十六第4题。

参考答案

课堂作业新设计

1.略

2.(V)()()(V)

3.略

思维训练

^3.14x52^x3.1485-2)2三x3.14x(5^)=12一56(dm2);,

^x3.14x42-ix3.14x(4-1)2=ix3.14x(42-32)x2=10.99(dm2X'

整理与复习

第一课时

教学内容

整理和复习

教材第77页的内容及第78页的练习十七。

教学要求

1.巩固对本单元学习的圆的周长和面积计算公式的理解和记忆,能熟练应用公式解题。

2.培养学生归纳整理知识的能力和应用数学知识解决实际问题的能力。

重点难点

重点:正确运用公式计算所学图形的面积。

难点:灵活运用所学面积公式解决实际问题。

教具学具

实物投影。

教学过程

一导入

1.本单元,我们学习了哪些知识?这些公式是怎样推导出来的?试着自己整理归纳出来。

2.小组进行交流。

二教学实施

1.师生共同归纳本单元的概念。

(1)圆心(2)半径(3)直径(4)轴对称图形(5)圆周率(6)扇形(7)圆心角

2.师生共同归纳本单元的公式。

(1)圆的周长:上”4或02页r

(2)圆的面积:

⑶圆环的面积:S.=S外-S内或(y?-r)

3.指导完成教材第77页的第2题。

(1)学生读题。

(2)说一说这道题一共有几个问题。

(3)学生独立完成,集体订正,订正时注意提醒学生所使用的单位名称要准确。

(4)指名板演。

4.完成教材第78页练习十七。

学生独立完成,集体订正。

三课堂作业新设计

1.直接写出得数。

3.14X2=3.14X5=3.14X7=3.14X3=3.14X4=

3.14X6=3.14X10=3.14X20=3.14X0.5=

2、5=7=8、9、10-

2.填空。

(1)在同一个圆里,能画出()条半径和直径。

(2)在同一个圆里,所有的半径都(),所有的直径都()o

(3)在同一个圆里,直径等于半径的(),半径等于直径的()o

(4)圆心决定圆的(),半径决定圆的(兀

(5)一个圆的半径是3分米,直径是()分米,周长是()分米。

(6)一个圆的周长是12.56米,它的半径是()米,直径是()米,面积是()平

方米。

(7)在一个边长是6分米的正方形里画一个最大的圆,这个圆的面积是()平方分

米。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论