版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.SKIPIF1<0=2xy,并满足初始条件:x=0,y=1的特解。解:SKIPIF1<0=2xdx两边积分有:ln|y|=xSKIPIF1<0+cy=eSKIPIF1<0+eSKIPIF1<0=cexSKIPIF1<0SKIPIF1<0另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=cexSKIPIF1<0,x=0y=1时c=1特解为y=eSKIPIF1<0.2.ySKIPIF1<0dx+(x+1)dy=0并求满足初始条件:x=0,y=1的特解。解:ySKIPIF1<0dx=-(x+1)dySKIPIF1<0dy=-SKIPIF1<0dx两边积分:-SKIPIF1<0=-ln|x+1|+ln|c|y=SKIPIF1<0另外y=0,x=-1也是原方程的解x=0,y=1时c=e特解:y=SKIPIF1<03.SKIPIF1<0=SKIPIF1<0解:原方程为:SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0dy=SKIPIF1<0dx两边积分:x(1+xSKIPIF1<0)(1+ySKIPIF1<0)=cxSKIPIF1<04.(1+x)ydx+(1-y)xdy=0解:原方程为:SKIPIF1<0dy=-SKIPIF1<0dx两边积分:ln|xy|+x-y=c另外x=0,y=0也是原方程的解。5.(y+x)dy+(x-y)dx=0解:原方程为:SKIPIF1<0=-SKIPIF1<0令SKIPIF1<0=u则SKIPIF1<0=u+xSKIPIF1<0代入有:-SKIPIF1<0du=SKIPIF1<0dxln(uSKIPIF1<0+1)xSKIPIF1<0=c-2arctgu即ln(ySKIPIF1<0+xSKIPIF1<0)=c-2arctgSKIPIF1<0.6.xSKIPIF1<0-y+SKIPIF1<0=0解:原方程为:SKIPIF1<0=SKIPIF1<0+SKIPIF1<0-SKIPIF1<0则令SKIPIF1<0=uSKIPIF1<0=u+xSKIPIF1<0SKIPIF1<0du=sgnxSKIPIF1<0dxarcsinSKIPIF1<0=sgnxln|x|+c7.tgydx-ctgxdy=0解:原方程为:SKIPIF1<0=SKIPIF1<0两边积分:ln|siny|=-ln|cosx|-ln|c|siny=SKIPIF1<0=SKIPIF1<0另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8SKIPIF1<0+SKIPIF1<0=0解:原方程为:SKIPIF1<0=SKIPIF1<0eSKIPIF1<02eSKIPIF1<0-3eSKIPIF1<0=c.9.x(lnx-lny)dy-ydx=0解:原方程为:SKIPIF1<0=SKIPIF1<0lnSKIPIF1<0令SKIPIF1<0=u,则SKIPIF1<0=u+xSKIPIF1<0u+xSKIPIF1<0=ulnuln(lnu-1)=-ln|cx|1+lnSKIPIF1<0=cy.10.SKIPIF1<0=eSKIPIF1<0解:原方程为:SKIPIF1<0=eSKIPIF1<0eSKIPIF1<0eSKIPIF1<0=ceSKIPIF1<011SKIPIF1<0=(x+y)SKIPIF1<0解:令x+y=u,则SKIPIF1<0=SKIPIF1<0-1SKIPIF1<0-1=uSKIPIF1<0SKIPIF1<0du=dxarctgu=x+carctg(x+y)=x+c12.SKIPIF1<0=SKIPIF1<0解:令x+y=u,则SKIPIF1<0=SKIPIF1<0-1SKIPIF1<0-1=SKIPIF1<0u-arctgu=x+cy-arctg(x+y)=c.13.SKIPIF1<0=SKIPIF1<0解:原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(ySKIPIF1<0-y)-dxSKIPIF1<0+x=cxy-ySKIPIF1<0+y-xSKIPIF1<0-x=c14:SKIPIF1<0=SKIPIF1<0解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(SKIPIF1<0ySKIPIF1<0+2y)-d(SKIPIF1<0xSKIPIF1<0+5x)=0ySKIPIF1<0+4y+xSKIPIF1<0+10x-2xy=c.15:SKIPIF1<0=(x+1)SKIPIF1<0+(4y+1)SKIPIF1<0+8xySKIPIF1<0解:原方程为:SKIPIF1<0=(x+4y)SKIPIF1<0+3令x+4y=u则SKIPIF1<0=SKIPIF1<0SKIPIF1<0-SKIPIF1<0SKIPIF1<0SKIPIF1<0-SKIPIF1<0=uSKIPIF1<0+3SKIPIF1<0=4uSKIPIF1<0+13u=SKIPIF1<0tg(6x+c)-1tg(6x+c)=SKIPIF1<0(x+4y+1).16:证明方程SKIPIF1<0SKIPIF1<0=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程:y(1+xSKIPIF1<0ySKIPIF1<0)dx=xdySKIPIF1<0SKIPIF1<0=SKIPIF1<0证明:令xy=u,则xSKIPIF1<0+y=SKIPIF1<0则SKIPIF1<0=SKIPIF1<0SKIPIF1<0-SKIPIF1<0,有:SKIPIF1<0SKIPIF1<0=f(u)+1SKIPIF1<0du=SKIPIF1<0dx所以原方程可化为变量分离方程。令xy=u则SKIPIF1<0=SKIPIF1<0SKIPIF1<0-SKIPIF1<0(1)原方程可化为:SKIPIF1<0=SKIPIF1<0[1+(xy)SKIPIF1<0](2)将1代入2式有:SKIPIF1<0SKIPIF1<0-SKIPIF1<0=SKIPIF1<0(1+uSKIPIF1<0)u=SKIPIF1<0+cx17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。解:设(x+y)为所求曲线上任意一点,则切线方程为:y=y’(x-x)+y则与x轴,y轴交点分别为:x=xSKIPIF1<0-SKIPIF1<0y=ySKIPIF1<0-xSKIPIF1<0y’则x=2xSKIPIF1<0=xSKIPIF1<0-SKIPIF1<0所以xy=c18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中SKIPIF1<0=SKIPIF1<0。解:由题意得:y’=SKIPIF1<0SKIPIF1<0dy=SKIPIF1<0dxln|y|=ln|xc|y=cx.SKIPIF1<0=SKIPIF1<0则y=tgSKIPIF1<0x所以c=1y=x.19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。证明:设(x,y)为所求曲线上的任意一点,则y’=kx则:y=kxSKIPIF1<0+c即为所求。常微分方程习题2.11.SKIPIF1<0,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得SKIPIF1<0SKIPIF1<0并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:SKIPIF1<03SKIPIF1<0解:原式可化为:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<012.SKIPIF1<0解SKIPIF1<0SKIPIF1<0SKIPIF1<015.SKIPIF1<0SKIPIF1<016.SKIPIF1<0解:SKIPIF1<0SKIPIF1<0,这是齐次方程,令SKIPIF1<017.SKIPIF1<0解:原方程化为SKIPIF1<0令SKIPIF1<0方程组SKIPIF1<0SKIPIF1<0则有SKIPIF1<0令SKIPIF1<0当SKIPIF1<0当SKIPIF1<0另外SKIPIF1<0SKIPIF1<019.已知f(x)SKIPIF1<0.解:设f(x)=y,则原方程化为SKIPIF1<0两边求导得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<020.求具有性质x(t+s)=SKIPIF1<0的函数x(t),已知x’(0)存在。解:令t=s=0x(0)=SKIPIF1<0=SKIPIF1<0若x(0)SKIPIF1<00得xSKIPIF1<0=-1矛盾。所以x(0)=0.x’(t)=SKIPIF1<0)SKIPIF1<0SKIPIF1<0两边积分得arctgx(t)=x’(0)t+c所以x(t)=tg[x’(0)t+c]当t=0时x(0)=0故c=0所以x(t)=tg[x’(0)t]求下列方程的解1.SKIPIF1<0=SKIPIF1<0解:y=eSKIPIF1<0(SKIPIF1<0eSKIPIF1<0SKIPIF1<0)=eSKIPIF1<0[-SKIPIF1<0eSKIPIF1<0(SKIPIF1<0)+c]=ceSKIPIF1<0-SKIPIF1<0(SKIPIF1<0)是原方程的解。2.SKIPIF1<0+3x=eSKIPIF1<0解:原方程可化为:SKIPIF1<0=-3x+eSKIPIF1<0所以:x=eSKIPIF1<0(SKIPIF1<0eSKIPIF1<0eSKIPIF1<0SKIPIF1<0SKIPIF1<0)=eSKIPIF1<0(SKIPIF1<0eSKIPIF1<0+c)=ceSKIPIF1<0+SKIPIF1<0eSKIPIF1<0是原方程的解。3.SKIPIF1<0=-sSKIPIF1<0+SKIPIF1<0SKIPIF1<0解:s=eSKIPIF1<0(SKIPIF1<0eSKIPIF1<0SKIPIF1<0)=eSKIPIF1<0(SKIPIF1<0)=eSKIPIF1<0(SKIPIF1<0)=SKIPIF1<0是原方程的解。4.SKIPIF1<0SKIPIF1<0,n为常数.解:原方程可化为:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是原方程的解.5.SKIPIF1<0+SKIPIF1<0=SKIPIF1<0解:原方程可化为:SKIPIF1<0=-SKIPIF1<0SKIPIF1<0(SKIPIF1<0)SKIPIF1<0SKIPIF1<0=SKIPIF1<0是原方程的解.6.SKIPIF1<0SKIPIF1<0解:SKIPIF1<0SKIPIF1<0=SKIPIF1<0+SKIPIF1<0令SKIPIF1<0SKIPIF1<0则SKIPIF1<0SKIPIF1<0=uSKIPIF1<0因此:SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(*)将SKIPIF1<0SKIPIF1<0带入(*)中得:SKIPIF1<0是原方程的解.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<013SKIPIF1<0这是n=-1时的伯努利方程。两边同除以SKIPIF1<0,SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0P(x)=SKIPIF1<0Q(x)=-1由一阶线性方程的求解公式SKIPIF1<0=SKIPIF1<0SKIPIF1<014SKIPIF1<0两边同乘以SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0这是n=2时的伯努利方程。两边同除以SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0P(x)=SKIPIF1<0Q(x)=SKIPIF1<0由一阶线性方程的求解公式SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<015SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0这是n=3时的伯努利方程。SKIPIF1<0两边同除以SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0=SKIPIF1<0P(y)=-2yQ(y)=SKIPIF1<0由一阶线性方程的求解公式SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<016y=SKIPIF1<0+SKIPIF1<0SKIPIF1<0SKIPIF1<0P(x)=1Q(x)=SKIPIF1<0由一阶线性方程的求解公式SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0c=1y=SKIPIF1<0设函数SKIPIF1<0(t)于SKIPIF1<0∞<t<SKIPIF1<0∞上连续,SKIPIF1<0(0)存在且满足关系式SKIPIF1<0(t+s)=SKIPIF1<0(t)SKIPIF1<0(s)试求此函数。令t=s=0得SKIPIF1<0(0+0)=SKIPIF1<0(0)SKIPIF1<0(0)即SKIPIF1<0(0)=SKIPIF1<0故SKIPIF1<0或SKIPIF1<0(1)当SKIPIF1<0时SKIPIF1<0即SKIPIF1<0SKIPIF1<0∞,SKIPIF1<0∞)(2)当SKIPIF1<0时SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0于是SKIPIF1<0变量分离得SKIPIF1<0积分SKIPIF1<0由于SKIPIF1<0,即t=0时SKIPIF1<01=SKIPIF1<0SKIPIF1<0c=1故SKIPIF1<020.试证:(1)一阶非齐线性方程(2.28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若SKIPIF1<0是(2.3)的非零解,而SKIPIF1<0是(2.28)的解,则方程(2.28)的通解可表为SKIPIF1<0,其中SKIPIF1<0为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解.证明:SKIPIF1<0(2.28)SKIPIF1<0SKIPIF1<0(2.3)设SKIPIF1<0,SKIPIF1<0是(2.28)的任意两个解则SKIPIF1<0SKIPIF1<0(1)SKIPIF1<0(2)(1)-(2)得SKIPIF1<0即SKIPIF1<0是满足方程(2.3)所以,命题成立。由题意得:SKIPIF1<0(3)SKIPIF1<0(4)1)先证SKIPIF1<0是(2.28)的一个解。于是SKIPIF1<0得SKIPIF1<0SKIPIF1<0故SKIPIF1<0是(2.28)的一个解。2)现证方程(4)的任一解都可写成SKIPIF1<0的形式设SKIPIF1<0是(2.28)的一个解则SKIPIF1<0(4’)于是(4’)-(4)得SKIPIF1<0从而SKIPIF1<0即SKIPIF1<0所以,命题成立。设SKIPIF1<0,SKIPIF1<0是(2.3)的任意两个解则SKIPIF1<0(5)SKIPIF1<0(6)于是(5)SKIPIF1<0得SKIPIF1<0即SKIPIF1<0其中SKIPIF1<0为任意常数也就是SKIPIF1<0满足方程(2.3)(5)SKIPIF1<0(6)得SKIPIF1<0即SKIPIF1<0也就是SKIPIF1<0满足方程(2.3)所以命题成立。21.试建立分别具有下列性质的曲线所满足的微分方程并求解。曲线上任一点的切线的纵截距等于切点横坐标的平方;曲线上任一点的切线的纵截距是切点横坐标和纵坐标的等差中项;解:设SKIPIF1<0为曲线上的任一点,则过SKIPIF1<0点曲线的切线方程为SKIPIF1<0从而此切线与两坐标轴的交点坐标为SKIPIF1<0即横截距为SKIPIF1<0,纵截距为SKIPIF1<0。由题意得:(5)SKIPIF1<0方程变形为SKIPIF1<0SKIPIF1<0于是SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以,方程的通解为SKIPIF1<0。(6)SKIPIF1<0方程变形为SKIPIF1<0SKIPIF1<0于是SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以,方程的通解为SKIPIF1<0。22.求解下列方程。(1)SKIPIF1<0解:SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0P(x)=SKIPIF1<0Q(x)=SKIPIF1<0由一阶线性方程的求解公式SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<01、验证下列方程是恰当方程,并求出方程的解。1.SKIPIF1<0解:SKIPIF1<0,SKIPIF1<0=1.则SKIPIF1<0所以此方程是恰当方程。凑微分,SKIPIF1<0得:SKIPIF1<02.SKIPIF1<0解:SKIPIF1<0,SKIPIF1<0.则SKIPIF1<0.所以此方程为恰当方程。凑微分,SKIPIF1<0得SKIPIF1<03.SKIPIF1<0解:SKIPIF1<0SKIPIF1<0则SKIPIF1<0.因此此方程是恰当方程。SKIPIF1<0(1)SKIPIF1<0(2)对(1)做SKIPIF1<0的积分,则SKIPIF1<0=SKIPIF1<0SKIPIF1<0(3)对(3)做SKIPIF1<0的积分,则SKIPIF1<0=SKIPIF1<0=SKIPIF1<0则SKIPIF1<0SKIPIF1<0SKIPIF1<0故此方程的通解为SKIPIF1<04、SKIPIF1<0解:SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.则此方程为恰当方程。凑微分,SKIPIF1<0SKIPIF1<0得:SKIPIF1<05.(SKIPIF1<0sinSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0+1)dx+(SKIPIF1<0cosSKIPIF1<0-SKIPIF1<0sinSKIPIF1<0+SKIPIF1<0)dy=0解:M=SKIPIF1<0sinSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0+1N=SKIPIF1<0cosSKIPIF1<0-SKIPIF1<0sinSKIPIF1<0+SKIPIF1<0SKIPIF1<0=-SKIPIF1<0sinSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0+SKIPIF1<0sinSKIPIF1<0SKIPIF1<0=-SKIPIF1<0sinSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0-SKIPIF1<0cosSKIPIF1<0+SKIPIF1<0sinSKIPIF1<0所以,SKIPIF1<0=SKIPIF1<0,故原方程为恰当方程因为SKIPIF1<0sinSKIPIF1<0dx-SKIPIF1<0cosSKIPIF1<0dx+dx+SKIPIF1<0cosSKIPIF1<0dy-SKIPIF1<0sinSKIPIF1<0dy+SKIPIF1<0dy=0d(-cosSKIPIF1<0)+d(sinSKIPIF1<0)+dx+d(-SKIPIF1<0)=0所以,d(sinSKIPIF1<0-cosSKIPIF1<0+x-SKIPIF1<0)=0故所求的解为sinSKIPIF1<0-cosSKIPIF1<0+x-SKIPIF1<0=C求下列方程的解:6.2x(ySKIPIF1<0-1)dx+SKIPIF1<0dy=0解:SKIPIF1<0=2xSKIPIF1<0,SKIPIF1<0=2xSKIPIF1<0所以,SKIPIF1<0=SKIPIF1<0,故原方程为恰当方程又2xySKIPIF1<0dx-2xdx+SKIPIF1<0dy=0所以,d(ySKIPIF1<0-xSKIPIF1<0)=0故所求的解为ySKIPIF1<0-xSKIPIF1<0=C7.(eSKIPIF1<0+3ySKIPIF1<0)dx+2xydy=0解:eSKIPIF1<0dx+3ySKIPIF1<0dx+2xydy=0eSKIPIF1<0xSKIPIF1<0dx+3xSKIPIF1<0ySKIPIF1<0dx+2xSKIPIF1<0ydy=0所以,deSKIPIF1<0(xSKIPIF1<0-2x+2)+d(xSKIPIF1<0ySKIPIF1<0)=0即d[eSKIPIF1<0(xSKIPIF1<0-2x+2)+xSKIPIF1<0ySKIPIF1<0]=0故方程的解为eSKIPIF1<0(xSKIPIF1<0-2x+2)+xSKIPIF1<0ySKIPIF1<0=C8.2xydx+(xSKIPIF1<0+1)dy=0解:2xydx+xSKIPIF1<0dy+dy=0d(xSKIPIF1<0y)+dy=0即d(xSKIPIF1<0y+y)=0故方程的解为xSKIPIF1<0y+y=C9、SKIPIF1<0解:两边同除以SKIPIF1<0得SKIPIF1<0即,SKIPIF1<0故方程的通解为SKIPIF1<010、SKIPIF1<0解:方程可化为:SKIPIF1<0即,SKIPIF1<0故方程的通解为:SKIPIF1<0即:SKIPIF1<0同时,y=0也是方程的解。11、SKIPIF1<0解:方程可化为:SKIPIF1<0SKIPIF1<0即:SKIPIF1<0故方程的通解为:SKIPIF1<012、SKIPIF1<0解:方程可化为:SKIPIF1<0SKIPIF1<0故方程的通解为:SKIPIF1<0即:SKIPIF1<013、SKIPIF1<0解:这里SKIPIF1<0,SKIPIF1<0SKIPIF1<0方程有积分因子SKIPIF1<0两边乘以SKIPIF1<0得:方程SKIPIF1<0是恰当方程故方程的通解为:SKIPIF1<0SKIPIF1<0即:SKIPIF1<014、SKIPIF1<0解:这里SKIPIF1<0因为SKIPIF1<0故方程的通解为:SKIPIF1<0即:SKIPIF1<015、SKIPIF1<0解:这里SKIPIF1<0SKIPIF1<0SKIPIF1<0方程有积分因子:SKIPIF1<0两边乘以SKIPIF1<0得:方程SKIPIF1<0为恰当方程故通解为:SKIPIF1<0即:SKIPIF1<016、SKIPIF1<0解:两边同乘以SKIPIF1<0得:SKIPIF1<0SKIPIF1<0故方程的通解为:SKIPIF1<017、试导出方程SKIPIF1<0具有形为SKIPIF1<0和SKIPIF1<0的积分因子的充要条件。解:若方程具有SKIPIF1<0为积分因子,SKIPIF1<0(SKIPIF1<0是连续可导)SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0方程有积分因子SKIPIF1<0的充要条件是:SKIPIF1<0是SKIPIF1<0的函数,此时,积分因子为SKIPIF1<0.SKIPIF1<0令SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0此时的积分因子为SKIPIF1<018.设SKIPIF1<0及SKIPIF1<0连续,试证方程SKIPIF1<0为线性方程的充要条件是它有仅依赖于SKIPIF1<0的积分因子.证:必要性若该方程为线性方程,则有SKIPIF1<0,此方程有积分因子SKIPIF1<0,SKIPIF1<0只与SKIPIF1<0有关.充分性若该方程有只与SKIPIF1<0有关的积分因子SKIPIF1<0.则SKIPIF1<0为恰当方程,从而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.其中SKIPIF1<0.于是方程可化为SKIPIF1<0即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)SKIPIF1<0g(u),\,试证方程yf(xy)dx+xg(xy)dy=0有积分因子u=(xy[f(xy)-g(xy)])SKIPIF1<0证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得:uyf(xy)dx+uxg(xy)dy=0则SKIPIF1<0=uf+uySKIPIF1<0+yfSKIPIF1<0=SKIPIF1<0+SKIPIF1<0-yfSKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0而SKIPIF1<0=ug+uxSKIPIF1<0+xgSKIPIF1<0=SKIPIF1<0+SKIPIF1<0-xgSKIPIF1<0=SKIPIF1<0=SKIPIF1<0故SKIPIF1<0=SKIPIF1<0,所以u是方程得一个积分因子21.假设方程(2.43)中得函数M(x,y)N(x,y)满足关系SKIPIF1<0=Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43)有积分因子u=exp(SKIPIF1<0+SKIPIF1<0)证明:M(x,y)dx+N(x,y)dy=0即证SKIPIF1<0SKIPIF1<0uSKIPIF1<0+MSKIPIF1<0=uSKIPIF1<0+NSKIPIF1<0SKIPIF1<0u(SKIPIF1<0-SKIPIF1<0)=NSKIPIF1<0-MSKIPIF1<0SKIPIF1<0u(SKIPIF1<0-SKIPIF1<0)=NeSKIPIF1<0f(x)-MeSKIPIF1<0g(y)SKIPIF1<0u(SKIPIF1<0-SKIPIF1<0)=eSKIPIF1<0(Nf(x)-Mg(y))由已知条件上式恒成立,故原命题得证。22、求出伯努利方程的积分因子.解:已知伯努利方程为:SKIPIF1<0两边同乘以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0线性方程有积分因子:SKIPIF1<0,故原方程的积分因子为:SKIPIF1<0,证毕!23、设SKIPIF1<0是方程SKIPIF1<0的积分因子,从而求得可微函数SKIPIF1<0,使得SKIPIF1<0试证SKIPIF1<0SKIPIF1<0也是方程SKIPIF1<0的积分因子的充要条件是SKIPIF1<0其中SKIPIF1<0是SKIPIF1<0的可微函数。证明:若SKIPIF1<0,则SKIPIF1<0又SKIPIF1<0即SKIPIF1<0为SKIPIF1<0的一个积分因子。24、设SKIPIF1<0是方程SKIPIF1<0的两个积分因子,且SKIPIF1<0常数,求证SKIPIF1<0(任意常数)是方程SKIPIF1<0的通解。证明:因为SKIPIF1<0是方程SKIPIF1<0的积分因子所以SKIPIF1<0SKIPIF1<0为恰当方程即SKIPIF1<0,SKIPIF1<0下面只需证SKIPIF1<0的全微分沿方程恒为零事实上:SKIPIF1<0即当SKIPIF1<0时,SKIPIF1<0是方程的解。证毕!求解下列方程1、SKIPIF1<0解:令SKIPIF1<0,则SKIPIF1<0,从而SKIPIF1<0,于是求得方程参数形式得通解为SKIPIF1<0.2、SKIPIF1<0解:令SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0,从而SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,于是求得方程参数形式得通解为SKIPIF1<0.3、SKIPIF1<0解:令SKIPIF1<0,则SKIPIF1<0,从而SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0,于是求得方程参数形式的通解为SKIPIF1<0,另外,y=0也是方程的解.4、SKIPIF1<0,SKIPIF1<0为常数解:令SKIPIF1<0,则SKIPIF1<0,从而SKIPIF1<0SKIPIF1<0SKIPIF1<0,于是求得方程参数形式的通解为SKIPIF1<0.5、SKIPIF1<01解:令SKIPIF1<0,则SKIPIF1<0,从而SKIPIF1<0SKIPIF1<0SKIPIF1<0,于是求得方程参数形式的通解为SKIPIF1<0.6、SKIPIF1<0解:令SKIPIF1<0,则SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,从而SKIPIF1<0,于是求得方程参数形式的通解为SKIPIF1<0,因此方程的通解为SKIPIF1<0.2.SKIPIF1<0SKIPIF1<0解:两边同除以SKIPIF1<0,得:SKIPIF1<0SKIPIF1<0即SKIPIF1<04.SKIPIF1<0解:两边同除以SKIPIF1<0,得SKIPIF1<0令SKIPIF1<0则SKIPIF1<0即SKIPIF1<0SKIPIF1<0得到SKIPIF1<0,即SKIPIF1<0另外SKIPIF1<0也是方程的解。6.SKIPIF1<0解:SKIPIF1<0SKIPIF1<0得到SKIPIF1<0即SKIPIF1<0另外SKIPIF1<0也是方程的解。8.SKIPIF1<0解:令SKIPIF1<0则:SKIPIF1<0即SKIPIF1<0得到SKIPIF1<0故SKIPIF1<0即SKIPIF1<0另外SKIPIF1<0也是方程的解。10.SKIPIF1<0解:令SKIPIF1<0即SKIPIF1<0而SKIPIF1<0故两边积分得到SKIPIF1<0因此原方程的解为SKIPIF1<0,SKIPIF1<0。12.SKIPIF1<0解:SKIPIF1<0SKIPIF1<0令SKIPIF1<0则SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0故方程的解为SKIPIF1<014.SKIPIF1<0解:令SKIPIF1<0则SKIPIF1<0那么SKIPIF1<0SKIPIF1<0求得:SKIPIF1<0故方程的解为SKIPIF1<0或可写为SKIPIF1<016.SKIPIF1<0解:令SKIPIF1<0则SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0即方程的解为SKIPIF1<018.SKIPIF1<0解:将方程变形后得SKIPIF1<0SKIPIF1<0同除以SKIPIF1<0得:SKIPIF1<0令SKIPIF1<0则SKIPIF1<0SKIPIF1<0即原方程的解为SKIPIF1<019.X(SKIPIF1<0解:方程可化为2y(SKIPIF1<0令SKIPIF1<0SKIPIF1<027.SKIPIF1<0解:令SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,两边积分得SKIPIF1<0即为方程的通解。另外,SKIPIF1<0,即SKIPIF1<0也是方程的解。28.SKIPIF1<0解:两边同除以SKIPIF1<0,方程可化为:SKIPIF1<0令SKIPIF1<0,则SKIPIF1<0即SKIPIF1<0,SKIPIF1<0SKIPIF1<0两边积分得SKIPIF1<0即SKIPIF1<0为方程的解。29.SKIPIF1<0解:令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0即SKIPIF1<0两边积分得SKIPIF1<0即为方程的解。30.SKIPIF1<0解:SKIPIF1<0方程可化为SKIPIF1<0SKIPIF1<0两边积分得SKIPIF1<0即SKIPIF1<0为方程的解。31.SKIPIF1<0解:方程可化为SKIPIF1<0两边同除以SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0即SKIPIF1<0两边积分得SKIPIF1<0将SKIPIF1<0代入得,SKIPIF1<0即SKIPIF1<0故SKIPIF1<032.SKIPIF1<0解:方程可化为SKIPIF1<0两边同加上SKIPIF1<0,得SKIPIF1<0(*)再由SKIPIF1<0,可知SKIPIF1<0(**)将(*)/(**)得SKIPIF1<0即SKIPIF1<0整理得SKIPIF1<0两边积分得SKIPIF1<0即SKIPIF1<0另外,SKIPIF1<0也是方程的解。求一曲线,使其切线在纵轴上之截距等于切点的横坐标。解:设SKIPIF1<0为所求曲线上的任一点,则在SKIPIF1<0点的切线SKIPIF1<0在SKIPIF1<0轴上的截距为:SKIPIF1<0由题意得SKIPIF1<0即SKIPIF1<0也即SKIPIF1<0两边同除以SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0即SKIPIF1<0为方程的解。摩托艇以5米/秒的速度在静水运动,全速时停止了发动机,过了20秒钟后,艇的速度减至SKIPIF1<0米/秒。确定发动机停止2分钟后艇的速度。假定水的阻力与艇的运动速度成正比例。解:SKIPIF1<0,又SKIPIF1<0,由此SKIPIF1<0即SKIPIF1<0其中SKIPIF1<0,解之得SKIPIF1<0又SKIPIF1<0时,SKIPIF1<0;SKIPIF1<0时,SKIPIF1<0。故得SKIPIF1<0,SKIPIF1<0从而方程可化为SKIPIF1<0当SKIPIF1<0时,有SKIPIF1<0米/秒即为所求的确定发动机停止2分钟后艇的速度。35.一质量为m的质点作直线运动,从速度等于零的时刻起,有一个和时间成正比(比例系数为k1)的力作用在它上面,此质点又受到介质的阻力,这阻力和速度成正比(比例系数为k2)。试求此质点的速度与时间的关系。解:由物理知识得:SKIPIF1<0根据题意:SKIPIF1<0故:SKIPIF1<0即:SKIPIF1<0(*)式为一阶非齐线性方程,根据其求解公式有SKIPIF1<0SKIPIF1<0又当t=0时,V=0,故c=SKIPIF1<0因此,此质点的速度与时间的关系为:SKIPIF1<036.解下列的黎卡提方程(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件测试合同模板
- 技术开发服务协议合同
- 2024年智能化生产线设备采购合同
- 2024年物流配送系统升级改造投资合同
- 5G智能电网建设项目合同
- 2025年上海市雇佣劳动合同模板(2篇)
- 2025年度拍卖师聘用及风险防控管理合同
- 湖北省黄冈麻城市重点达标名校2025届中考生物最后一模试卷含解析
- 2025年度民间借款担保人责任承担合同范本9篇
- 2025化工厂土地厂房租赁与环保设施维护合同3篇
- 2024政务服务综合窗口人员能力与服务规范考试试题
- 第十五届全国石油和化工行业职业技能竞赛(化工总控工)考试题库-下(判断题)
- 羊肉购销合同范本
- 2024五年级下册语文组词表
- 2024 smart社区运营全案服务项目
- JT∕T 1477-2023 系列2集装箱 角件
- JT-T-566-2004轨道式集装箱门式起重机安全规程
- 危险废物处置项目实施方案
- 人教版初三化学上册讲义
- (完整版)共边比例定理及其应用
- 村情要素模板
评论
0/150
提交评论