浙江省杭州市余杭区2017届九年级(上)期中数学试卷(含解析)_第1页
浙江省杭州市余杭区2017届九年级(上)期中数学试卷(含解析)_第2页
浙江省杭州市余杭区2017届九年级(上)期中数学试卷(含解析)_第3页
浙江省杭州市余杭区2017届九年级(上)期中数学试卷(含解析)_第4页
浙江省杭州市余杭区2017届九年级(上)期中数学试卷(含解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第cm,且△ABC内接于半径为2cm的⊙O,则∠A=60或120度.【考点】圆周角定理.【分析】连接OB、OC,作OD⊥BC于D,则∠ODB=90°,由垂径定理得出BD=CD=BC=cm,由等腰三角形的性质得出∠BOD=∠COD=∠BOC,由三角函数求出∠BOD=60°,得出∠BOC=120°,由圆周角定理即可得出结果.【解答】解:分两种情况:①当△ABC是锐角三角形时;连接OB、OC,作OD⊥BC于D,如图1所示:则∠ODB=90°,BD=CD=BC=cm,∠BOD=∠COD=∠BOC,∵sin∠BOD=,∴∠BOD=60°,∴∠BOC=120°,∴∠A=∠BOC=60°②当△ABC是钝角三角形时,如图2所示:∠A=180°﹣60°=120°;综上所述:∠A的度数为60°或120°,故答案为:60或120.14.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是60°.【考点】旋转的性质.【分析】根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°﹣40°×2=10°,∠ACO=∠A===70°,由三角形的外角性质得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.故答案为:60°.15.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为5.【考点】垂径定理;勾股定理.【分析】作OF⊥PQ于F,连接OP,根据已知和图形证明四边形MEOF为正方形,设半径为x,用x表示出OF,在直角△OPF中,根据勾股定理列出方程求出x的值,得到答案.【解答】解:作OF⊥PQ于F,连接OP,∴PF=PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18﹣x,在直角△OPF中,x2=122+(18﹣x)2,解得x=13,则MF=OF=OE=5,∴OM=5.故答案为:5.16.在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是(,3)或(,)或(,)或(2,2).【考点】二次函数综合题.【分析】由于两三角形的对应边不能确定,故应分四种情况进行讨论:①∠POQ=∠OAH=30°,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标,由三角形的面积公式即可得出结论;②∠POQ=∠AOH=60°,此时∠POH=30°,即直线OP:y=x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标,由三角形的面积公式即可得出结论;③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论;④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论.【解答】解:①如图1,当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;∵∠AOH=60°,∴直线OA:y=x,联立抛物线的解析式得:,解得:或,故A(,3);②当∠POQ=∠AOH=60°,此时△POQ≌△AOH,易知∠POH=30°,则直线y=x,联立抛物线的解析式,得:,解得:或,故P(,),那么A(,);③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH;易知∠POH=30°,则直线y=x,联立抛物线的解析式,得:,解得:或,故P(,),∴OP==,QP=,∴OH=OP=,AH=QP=,故A(,);④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH;此时直线y=x,联立抛物线的解析式,得:,解得:或,∴P(,3),∴QP=2,OP=2,∴OH=QP=2,AH=OP=2,故A(2,2).综上可知:符合条件的点A有四个,分别为:(,3)或(,)或(,)或(2,2).故答案为:(,3)或(,)或(,)或(2,2).三、解答题(6+8+8+10+10+12+12=66分)17.如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求⊙【考点】作图—复杂作图.【分析】(1)作线段AB于BC的垂直平分线相交于点O,则点O即为圆心,OA为半径,作△ABC的外接圆即可;(2)先根据勾股定理求出CD的长,设OC=OA=r,则OD=CD﹣r,在Rt△AOD中,利用勾股定理求出r的值即可.【解答】解:(1)如图,⊙O即为所求;(2)∵AB=6cm,AC=BC=5∴AD=AB=3cm,∴CD===4cm.设OC=OA=r,则OD=4﹣r,在Rt△AOD中,∵AD2+OD2=OA2,即32+(4﹣r)2=r2,解得r=.18.甲、乙两人同在如图所示的地下车库等电梯,两人到1至4层的任意一层出电梯,(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出甲乙在同一个楼层的情况数,即可求出所求的概率;(2)分别求出两人获胜的概率比较得到公平与否.【解答】解:(1)列表如下:甲乙12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)一共出现16种等可能结果,其中出现在同一层楼梯的有四种结果,∴P(甲、乙在同一层楼梯)==;(2)不公平,理由为:由(1)列知:甲、乙住在同层或相邻楼层的有10种结果故P(小亮胜)=P(同层或相邻楼层)==,P(小芳胜)=1﹣=,∵>,∴游戏不公平.19.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:AD=CE.【考点】圆心角、弧、弦的关系.【分析】欲证明AD=CE,只需证明=即可.如图,根据平行线的性质和角平分线的定义易证得∠C=∠CAD,所以=,则+=+,故=.【解答】证明:如图,∵AB∥CE,∴∠ACE=∠BAC.又∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠C=∠CAD,∴=,∴+=+,∴=,∴AD=CE.20.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【考点】二次函数的应用.【分析】(1)根据待定系数法解出解析式即可;(2)根据题意列出方程解答即可;(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.21.如图,在平面直角坐标系内,已知点A(2,2),B(﹣6,﹣4),C(2,﹣4).(1)求△ABC的外接圆的圆心点M的坐标;(2)求△ABC的外接圆在x轴上所截弦DE的长.【考点】三角形的外接圆与外心;坐标与图形性质.【分析】(1)根据三角形的外心是三角形三边垂直平分线的交点解答;(2)连接OM,作MN⊥DE于N,根据勾股定理求出DN,根据垂径定理求出DE.【解答】解:(1)∵B(﹣6,﹣4),C(2,﹣4),∴线段BC的垂直平分线是x=﹣2,∵A(2,2),C(2,﹣4),∴线段AC的垂直平分线是y=﹣1,∴△ABC的外接圆的圆心M的坐标为:(﹣2,﹣1);(2)连接OM,作MN⊥DE于N,由题意得,AC=6,BC=8,由勾股定理得,AB=10,则DN==2,由垂径定理得,DE=2DN=4.22.一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?【考点】二次函数的应用;垂径定理的应用.【分析】(1)①利用待定系数法求函数解析式即可;②根据题意得出y=3时,求出x的值即可;(2)①构造直角三角形利用BW2=BC2+CW2,求出即可;②在RT△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,求出即可.【解答】解:(1)①设抛物线解析式为:y=ax2+c,∵桥下水面宽度AB是20米,高CD是4米,∴A(﹣10,0),B(10,0),D(0,4),∴,解得:∴抛物线解析式为:y=,②∵要使高为3米的船通过,∴y=3,则3=,解得:x=±5,∴EF=10米;(2)①设圆半径r米,圆心为W,∵BW2=BC2+CW2,∴r2=(r﹣4)2+102,解得:r=14.5;②在RT△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=2,此时宽度EF=4米23.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为(0,2),点B的坐标为(﹣3,1);(2)抛物线的解析式为y=x2+x﹣2;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标;(2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;(3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据S△DBC=S△CEB+S△CED进行计算即可;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可.③以点P为直角顶点,求出点P的坐标,再判断点P不在抛物线上.【解答】解:(1)∵C(﹣1,0),AC=,∴OA===2,∴A(0,2);过点B作BF⊥x轴,垂足为F,∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,在△AOC与△CFB中,∵,∴△AOC≌△CFB,∴CF=OA=2,BF=OC=1,∴OF=3,∴B的坐标为(﹣3,1),故答案为:(0,2),(﹣3,1);(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:1=9a﹣3解得a=,∴抛物线解析式为:y=x2+x﹣2.故答案为:y=x2+x﹣2;(3)由(2)中抛物线的解析式可知,抛物线的顶点D(﹣,﹣),设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:,解得.∴BD的关系式为y=﹣x﹣.设直线BD和x轴交点为E,则点E(﹣,0),CE=.∴S△DBC=××(1+)=;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1过点P1作P1M⊥x∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,∴△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论