2025年广西柳州市城中区中考数学模拟试卷(附答案解析)_第1页
2025年广西柳州市城中区中考数学模拟试卷(附答案解析)_第2页
2025年广西柳州市城中区中考数学模拟试卷(附答案解析)_第3页
2025年广西柳州市城中区中考数学模拟试卷(附答案解析)_第4页
2025年广西柳州市城中区中考数学模拟试卷(附答案解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年广西柳州市城中区中考数学模拟试卷

一、选择题:本题共12小题,每小题3分,共30分。只有一项是符合题目要求的。

1.(3分)在下列四个数中,最小的数是(

A.0B.-2C.3D.2025

2.(3分)柳州是中国的汽车制造基地之一,拥有众多汽车品牌,请选出是中心对称图形的车标是(

A.B.

3.(3分)下列各式中是分式的是(

1%+12

A.-B.——C.D.0

7T4x

4.(3分)下列各组数中,能够组成三角形的是(

A.1,2,3B.1,2,4C.2,2,4D.4,4,2

5.(3分)对于一组数据1,1,2,4,下列结论不正确的是(

A.平均数是2B.众数是1

C.中位数是1.5D.方差是3

6.(3分)下列运算正确的是()

A.Q2+Q3=Q5B.

C.as-i~a4=a2D.(-ab2)2=a2b4

7.(3分)若一个角为55°,则它的补角的度数为()

A.25°B.35°C.115°D.125°

8.(3分)圆心角为120°的扇形的半径是3c冽,则这个扇形的面积是()

A.611cm2B.311cm2C.971c加2D.ncm2

1

9.(3分)如图,在△45C中,ZB=25°,分别以点&。为圆心,以大于5BC长为半径画弧,交于点

N,连接交45于点。,连接CD,则。的度数为()

第1页(共23页)

A.30°B.45C.50°D.60°

10.(3分)下列有关函数y=(x-1)2+2的说法不正确的是()

A.开口向上

B.对称轴是直线x=l

C.顶点坐标是(-1,2)

D.函数图象中,当x<0时,y随x增大而减小

11.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名

著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,

小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小

和尚3人分1个,正好分完,大、小和尚各有多少人?若设大和尚有x人,则列出的方程正确的是()

xX

A.3x+掾=100B.-+3(100-x)=100

100Tx

C.3x+100D.-+100-3x=100

33

12.(3分)如图,已知矩形纸片/BCD,其中/8=6,BC=8,现将纸片进行如下操作:

第一步,如图①将纸片对折,使48与。C重合,折痕为ER展开后如图②;

第二步,再将图②中的纸片沿对角线3。折叠,展开后如图③;

第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线2。上的点H处,如图④.

则。〃的长为()

二、填空题(本题共6小题,每小题2分,共12分)

13.(2分)-2的绝对值是.

14.(2分)分解因式:a~+3a=.

15.(2分)已知一个多边形的每个外角为36°,则这个多边形的边数为.

16.(2分)如图,/8是O。的直径,CD是O。的弦于点E,若/2=10,CD=8,则OE=.

第2页(共23页)

17.(2分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在N处用仪

器测得赛场一宣传气球顶部£处的仰角为21.8°,仪器与气球的水平距离2C为20米,且距地面高度

为1.5米,则气球顶部离地面的高度EC是米(结果精确到0.1米,sin21.8°-0.3714,

cos21.8°20.9285,tan21.8°-0.4000).

18.(2分)如图,在直角中,AO=V3,AB=\,将△480绕点。顺时针旋转105°至△HB'O

的位置,点£是。夕的中点,且点E在反比例函数尸9的图象上,则左的值为.

三、解答题:本题共8小题,共72分。解答应写出说明,过程或演算步骤。

19.(6分)计算:2X(-3)+23+(1-5).

20.(6分)解一元一次不等式组卜xl<],并把解在数轴上表示出来.

-4-3-2-101234

21.(10分)如图,△48C的顶点坐标分别是/(3,6)、B(1,3)、C(4,2).

(1)如果将△48C沿x轴翻折得到写出△421C1的三个顶点坐标;

(2)如果将△NiBiCi绕点G按逆时针方向旋转90°得到

第3页(共23页)

y

OT

-1

-2

-3

-4

-5

-6

-

7

22.(10分)为了提高师生们的安全意识,使青少年学生安全、健康成长,某校组织学生防火、防食物中

毒、防交通事故等一系列演练活动,并组织了一次“安全知识答题”活动.该校随机抽取部分学生的答

题成绩进行统计,将成绩分为四个等级:A(90WxW100),B(80Wx<90),C(60<x<80),D(0<x

<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息解答下列问题:

(1)这次抽样调查共抽取人;条形统计图中的,〃

(2)将条形统计图补充完整;

(3)已知甲、乙、丙、丁四名学生的答题成绩均为4等级,并且他们又有较强的表达能力,学校决定

从他们四人中随机抽出两名学生去做‘‘安全知识宣传员”,请用列表或画树状图的方法,求甲、乙两名

同学恰好能被同时选中的概率.

学生答题成绩条形统计图学生答题成绩扇形统计图

23.(10分)如图,。。的直径48与其弦CD相交于点E,过点/的切线交CD延长线于点尸,且N/ED

ZEAD.

(1)求证:AD=FD;

(2)若/£=6,sin^AFE=求半径的长.

第4页(共23页)

A

24.(10分)如图,△48。为边长等于4的等边三角形,点b是3c边上的一个动点(不与点3、。重合),

FDLAB,FELAC,垂足分别是。、E.

(1)求证:ABDFsACEF;

(2)若C尸=a,四边形/£)尸£面积为S,求出S与。之间的函数关系式,并写出。的取值范围.

25.(10分)图1是煤油温度计,该温度计的左侧是华氏温度(°F),右侧是摄氏温度(℃).华氏温度与

摄氏温度之间存在着某种函数关系,小明通过查阅资料和观察温度计,得到了如表所示的数据.

摄氏温度值010203040

x/℃

华氏温度值32506886104

y/°F

(1)观察表格中的数据,华氏温度与摄氏温度之间的关系是(填“一次”、“反比例”或“二

次”)函数;在如图2所示的平面直角坐标系中描出上表相应的点,并用平滑的线进行连接;

(2)求y与x之间的函数解析式;

(3)设(1)中所画的图象与直线y=x交于点点/的实际意义是;

(4)某种疫苗需低温保存,其活性只能在某温度区间(摄氏温度)内维持,在该温度区间内,任意摄

氏温度与其对应的华氏温度的数值相差的最大值为16,求该温度区间的最大温差是多少摄氏度.

第5页(共23页)

图1图2

26.(10分)综合与实践

图1图2备用图

(1)【问题发现】

在学习了''特殊平行四边形”后,兴趣小组的同学发现了这样一个问题:如图1,已知正方形/BCD,

£为对角线/C上一动点,过点C作垂直于NC的射线CG,点厂在射线CG上,且/班尸=90°,连接

EF.通过观察图形,直接写出与8尸的数量关系:.

(2)【类比探究】

兴趣小组的同学在探究了正方形中的结论后,将正方形换成矩形继续探究.如图2,已知矩形/BCD,

AB=2340=10,E为对角线NC上一动点,过点。作垂直于/C的射线CG,点尸在射线CG上,且

NEBF=9Q°,连接£足请判断线段NE与CF的数量关系,并说明理由.

(3)【拓展应用】

在(2)的条件下,点E在对角线/C上运动,当四边形8EW为轴对称图形时,请直接写出线段8/

的长:

第6页(共23页)

2025年广西柳州市城中区中考数学模拟试卷

参考答案与试题解析

一、选择题:本题共12小题,每小题3分,共30分。只有一项是符合题目要求的。

1.(3分)在下列四个数中,最小的数是()

A.0B.-2C.3D.2025

【解答】解:V2025>3>0>-2

,所给的四个数中,最小的数是-2,

故选:B.

2.(3分)柳州是中国的汽车制造基地之一,拥有众多汽车品牌,请选出是中心对称图形的车标是()

【解答】解:/、能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心

对称图形,符合题意;

3、不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,

不符合题意;

C、不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,

不符合题意;

。、不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,

不符合题意,

故选:A.

3.(3分)下列各式中是分式的是()

1x+12

A.—B.-----C.-D.0

1T4X

11

【解答】解:一,—.0不是分式;

7T4

一是分式;

X

故选:C.

4.(3分)下列各组数中,能够组成三角形的是()

第7页(共23页)

A.1,2,3B.1,2,4C.2,2,4D.4,4,2

【解答】解:/、1+2=3,不能够组成三角形,故此选项不符合题意;

5、1+2V4,不能够组成三角形,故此选项不符合题意;

C、2+2=4,不能够组成三角形,故此选项不符合题意;

D、2+4>4,能够组成三角形,故此选项符合题意.

故选:D.

5.(3分)对于一组数据1,1,2,4,下列结论不正确的是()

A.平均数是2B.众数是1

C.中位数是1.5D.方差是3

【解答】解:/、元=*(1+1+2+4)=2,说法正确,故此选项不符合题意;

B、数据1,1,2,4,1出现次数最多的是1,所以众数是1,说法正确,故此选项不符合题意;

C、数据1,1,2,4的中位数=岑=1.5,说法正确,故此选项不符合题意;

D、数据1,1,2,4的方差s2="[(l-2)2+(1—2>+(2-2)2+(4—2)2]=1.5,原说法错误,故

此选项符合题意;

故选:D.

6.(3分)下列运算正确的是()

A.a2+a3=a5B.a2,ai=a6

C.aSjra4—a2D.(-ab2)2—a2b4

【解答】解:4、/与.3不属于同类项,不能合并,故N不符合题意;

B、a2,a3=a5,故2不符合题意;

C、a^a4=a4,故C不符合题意;

D、(-ab2)2—a2b4,故。符合题意;

故选:D.

7.(3分)若一个角为55。,则它的补角的度数为()

A.25°B.35°C.115°D.125°

【解答】解:根据定义55°的补角度数是180。-55。=125°.

故选:D.

8.(3分)圆心角为120。的扇形的半径是3cm,则这个扇形的面积是()

A.6ncm-B.3-acm-C.9ncm2D.ncm2

第8页(共23页)

【解答】解:扇形的面积公式=嘿*=3nc优2,

故选:B.

1

9.(3分)如图,在△ZBC中,/B=25°,分别以点2,C为圆心,以大于]BC长为半径画弧,交于点

则//DC的度数为()

C.50°D.60°

【解答】解:由作图过程可知,直线为线段2C的垂直平分线,

:.CD=BD,

:.NB=/BCD=25°,

:.ZADC=ZB+ZBCD=50°.

故选:C.

10.(3分)下列有关函数y=(x-1)2+2的说法不正确的是()

A.开口向上

B.对称轴是直线x=l

C.顶点坐标是(-1,2)

D.函数图象中,当x<0时,y随x增大而减小

【解答】解:N、:函数y=(x-1)2+2,1>0,

•••开口向上,正确,故此选项不符合题意;

B、,函数y=(x-1)2+2,

对称轴是直线x=l,正确,故此选项不符合题意;

C、,函数y=(x-1)?+2,

顶点坐标是(1,2),原说法不正确,故此选项符合题意;

D、•函数y=(x-1)2+2,

开口向上,对称轴是直线x=l,

,当X<1时,V随X增大而减小,当X>1时,V随X增大而增大,

...当x<0时,y随x增大而减小,正确,故此选项不符合题意;

第9页(共23页)

故选:c.

11.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名

著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,

小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小

和尚3人分1个,正好分完,大、小和尚各有多少人?若设大和尚有x人,则列出的方程正确的是()

VX

A.3%+|=100B.-+3(100-%)=100

100-久x

C.3x+=100D.-+100-3%=100

33

【解答】解:设大和尚有x人,则小和尚(100-x)人,由题意得:

1

3x+1(100-x)=100,

故选:C.

12.(3分)如图,已知矩形纸片48CD,其中/B=6,BC=8,现将纸片进行如下操作:

第一步,如图①将纸片对折,使与。C重合,折痕为E凡展开后如图②;

第二步,再将图②中的纸片沿对角线2。折叠,展开后如图③;

第三步,将图③中的纸片沿过点E的直线折叠,使点C落在对角线3。上的点〃处,如图④.

则。7/的长为()

【解答】解:如图所示,连接CH,

由折叠可得,BF=CF,CF=HF,

:./FBH=ZFHB,ZFCH=ZFHC,

.•.△BS中,/BHC=90°,

:.CH±BD,

:矩形纸片48CD,其中/B=6,3c=8,

,RtA8CD中,BD=10,

第10页(共23页)

...RtZXCDH中,DH=y/CD2-CH2=^62-(普/=学,

故选:A.

二、填空题(本题共6小题,每小题2分,共12分)

13.(2分)-2的绝对值是2.

【解答】解:-2的绝对值是:2.

故答案为:2.

14.(2分)分解因式:a2+3a=a(a+3).

【解答】解:a^+3a=a(a+3).

故答案为:a(a+3).

15.(2分)已知一个多边形的每个外角为36°,则这个多边形的边数为10.

【解答】解:这个多边形的边数是:360°+36°=10.

故答案为10.

16.(2分)如图,是。。的直径,CD是。。的弦,4B_LCD于点£,若48=10,CD=8,则OE=3

【解答】解:是。。的直径,N5=10,

OC=OB=%B=5,

:CD是。。的弦,ABLCD于点、E,CD=8,

1

:・CE=^CD=4,

第11页(共23页)

在RtAO£C中,OE=VOC2-CE2=V52-42=3,

故答案为:3.

17.(2分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在/处用仪

器测得赛场一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离2C为20米,且距地面高度

AB为1.5米,则气球顶部离地面的高度EC是9.5米(结果精确到0.1米,sin21.8°^0.3714,cos21.8°

N0.9285,tan21.8°20.4000).

【解答】解:由题意得,四边形/BCD是矩形,

:.AB=CD=L5m,4D=BC=20m,

在RtZXNDE中,

:40=2。=20/,/E4D=21.8°,

:.DE=AD-tanll.8°^20X0.4000=8(m),

.•.CE=C7>EDE=1.5+8=9.5(m),

答:气球顶部离地面的高度EC是9.5〃z.

故答案为:9.5.

18.(2分)如图,在直角△/B。中,AO=V3,AB=\,将△480绕点。顺时针旋转105°至△⑷B'O

的位置,点E是OB'的中点,且点E在反比例函数的图象上,则左的值为—二.

【解答】解:如图,作昉轴,垂足为"

第12页(共23页)

由题意,在中,AO=V3,AB=\,

:.BO=^JAB2+AO2=2.

1

:.AB=^BO.

:.ZAOB=30°.

又△450绕点。顺时针旋转105°至△%'B'。的位置,

;・/BOB占1050.

AZ5'OX=45°.

又点E是OB,的中点,

:.OE=^BO=l.

在RtZXEOH中,

•・・N5'OX=45°,

:.EH=OH=

V2V2

:・E(—,—

22

又E在丁=[上,

•・/—2x2-2,

故答案为:

三、解答题:本题共8小题,共72分。解答应写出说明,过程或演算步骤。

19.(6分)计算:2X(-3)+23+(1-5).

【解答】解:原式=2X(-3)+84-(-4)

=-6-2

=-8.

1+x>-2

20.(6分)解一元一次不等式组•,并把解在数轴上表示出来.

3

第13页(共23页)

A

-4-3-2-101234

1+%>-2(J)

【解答】解:

竽W1②

由①得,x>-3,

由②得,xW2,

故此不等式组的解集为:-3<xW2.

在数轴上表示为:

----»-----------------------------;--------------->

-4-3-2-101234

21.(10分)如图,△48C的顶点坐标分别是/(3,6)>B(1,3)、C(4,2).

(1)如果将△NBC沿x轴翻折得到△481。,写出△小囱。的三个顶点坐标;

(2)如果将△/出。1绕点。按逆时针方向旋转90°得到△/*2。.

y

7

6

5

4

3

2

1

O

1

-

2

-

-3

-4

-5

【解答】解:(1)如图1所示,△431C1即为所求,Ai(3,-6),Bi(1,-3)Ci(4,-2),

第14页(共23页)

y

_12__34-56L89」。力

图1

(2)如图2所示,△/2比。1即为所求,

123456寸89」。力

图2

22.(10分)为了提高师生们的安全意识,使青少年学生安全、健康成长,某校组织学生防火、防食物中

毒、防交通事故等一系列演练活动,并组织了一次“安全知识答题”活动.该校随机抽取部分学生的答

题成绩进行统计,将成绩分为四个等级:A(90WxW100),B(80Wx<90),C(60Wx<80),D(0<x

<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息解答下列问题:

(1)这次抽样调查共抽取200人:条形统计图中的加=28.

(2)将条形统计图补充完整;

(3)已知甲、乙、丙、丁四名学生的答题成绩均为/等级,并且他们又有较强的表达能力,学校决定

从他们四人中随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求甲、乙两名

同学恰好能被同时选中的概率.

第15页(共23页)

学生答题成绩条形统计图学生答题成绩扇形统计图

故答案为:200,28;

(2)C等级的人数为200-48-64-28=60(人),补全条形图如图:

学生答题成绩条形统计图

开始

乙丙丁甲丙丁甲乙丁甲乙丙

共12种等可能的结果,其中甲、乙两名同学恰好能被同时选中的结果有2种,

.21

•)p=适=1

23.(10分)如图,。。的直径48与其弦CD相交于点E,过点/的切线交CD延长线于点尸,且/4ED

=ZEAD.

(1)求证:AD=FD;

(2)若/E=6,sinZ-AFE=-g-,求。。半径的长.

第16页(共23页)

【解答】(1)证明:・・・4月与圆相切于4,

・・・直径4BL4R

AZFAD+ZEAD=ZF+ZAED=Z90°,

・.・ZAED=ZEAD,

:./F=Z.FAD,

:.AD=FD;

(2)解:连接B。,

VZEAF=90°,

3

9:sin^AFE=

./,厂「AE3

・・cosNAEF==耳,

9

:AE=6f

:.EF=\Q,

,//AED=NEAD,

:・AD=ED,

1

:・AD=^EF=5,

,・7B是圆的直径,

ZADB=90°,

,//AED=NEAD,

3

*.*cosZK4Z)=cosZAEF=引

eAD3

••布一F,

・・5AB=2-5g-,

••.o。半径的长是

6

24.(10分)如图,△48C为边长等于4的等边三角形,点尸是2c边上的一个动点(不与点3、C重合),

FDLAB,FELAC,垂足分别是。、E.

(1)求证:△BDFs^CEF;

(2)若CF=a,四边形NOEE面积为S,求出S与。之间的函数关系式,并写出。的取值范围.

第17页(共23页)

A

【解答】(1)证明:•••△NBC为边长等于4的等边三角形,

AZS=ZC=60°,

'JFDLAB,FELAC,

:.NBDF=NCEF=90°,

:.△BDFs^CEF;

(2)解::△48C为边长等于4的等边三角形,CF=a,

:.BF=4-a,

在RtAC£尸中,CF=a,NC=60°,

:.CE=CF-cos60°=1a,EF=CF-sin60°=^a,

._1,._11V3_-/32

・・Sc△CE/7="2CrrD,E17rc=qXqdXCt=-g-Cl,

同理S^BDF=络(4—a)2,

:S^BC=AC-sin60°=1x4x4x^=4亚

;.S=SAABC~S^CEF-S^BDF=4V3-^-a2_*(4—a)2=—^-a2+V3a+2A/3,

;点F是BC边上的一个动点,

.•.0<a<4,

:.S=-^-a2+V3a+2V3(0<a<4).

25.(10分)图1是煤油温度计,该温度计的左侧是华氏温度(°F),右侧是摄氏温度(℃).华氏温度与

摄氏温度之间存在着某种函数关系,小明通过查阅资料和观察温度计,得到了如表所示的数据.

摄氏温度值010203040

x/℃

华氏温度值32506886104

y/°F

(1)观察表格中的数据,华氏温度与摄氏温度之间的关系是一次(填“一次”、“反比例”或“二

第18页(共23页)

次”)函数;在如图2所示的平面直角坐标系中描出上表相应的点,并用平滑的线进行连接;

(2)求了与x之间的函数解析式;

(3)设(1)中所画的图象与直线y=x交于点4点N的实际意义是华氏温度的值与摄氏温度的值

(4)某种疫苗需低温保存,其活性只能在某温度区间(摄氏温度)内维持,在该温度区间内,任意摄

氏温度与其对应的华氏温度的数值相差的最大值为16,求该温度区间的最大温差是多少摄氏度.

C

°*F

0一

一=

=一

店)

一h

_

=1=16

=||

店=

三^

=

—=1三1

|=-

一-|=-

|=一2

一=

图1图2

【解答】解:(1)观察表格中的数据发现:摄氏温度每升高10℃,华氏温度就升高18°F,

华氏温度与摄氏温度之间的关系是一次函数;

故答案为:一次;

平面直角坐标系中描出上表相应的点,并用平滑的线进行连接,如图:

第19页(共23页)

•J

c。

O3

一L

-三

_l=l

婚=k

=_-

三!ii=g

一l=-_

三-l=g

i一

n三=

g^孤

p三

^n=

_n能

-_三

o=l=

一==

一=

图1图2

(2)设歹与x的函数解析式为^=区+6.

将(。,32),(10,50)代入歹=履+6中,得:{*7;2b=50

解得{::裳

与x的函数解析式为y=L8x+32;

(3)点/的实际意义是华氏温度的值与摄氏温度的值相等;

故答案为:华氏温度的值与摄氏温度的值相等;

(4)根据题意得:11.8x+32-x|=16.

当1.8x+32-x=16时,

解得x=-20;

当x-(1.8x+32)=16时,

解得x=-60,-20-(-60)=40℃,

该温度区间的最大温差是40摄氏度.

26.(10分)综合与实践

图1图2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论