广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题含解析_第1页
广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题含解析_第2页
广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题含解析_第3页
广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题含解析_第4页
广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市宝山区2024-2025学年学业质量调研抽测(第二次)4月二诊数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()A.0.15 B.0.2 C.0.25 D.0.32.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形3.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A.4π+3 B.4π+ C.π+ D.π+34.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:25.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60586.在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107 B.3.4×106 C.3.4×105 D.34×1057.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°8.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 B.6 C.2 D.89.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A. B. C.+1 D.310.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.11.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为()A.1 B.2 C.3 D.612.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:ax2-a=______.14.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.15.若a﹣3有平方根,则实数a的取值范围是_____.16.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________17.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.18.函数自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.20.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.21.(6分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.22.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.23.(8分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?24.(10分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.25.(10分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?26.(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?27.(12分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.2、B【解析】

如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.3、A【解析】

连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.【详解】如下图,连AC,OC,BC,设CD交AB于H,∵CD垂直平分线段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直径,∴,∴,∵,∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,∵MA=MH,∴∴,∵,∴CF扫过的面积为,故选:A.本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.4、B【解析】

∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B5、D【解析】

设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有an个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.此题考查规律型:图形的变化,解题关键在于找到规律6、B【解析】

解:3400000=.故选B.7、D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质8、A【解析】

解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故选A.本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.9、C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=m;∴AC+BC=(1+)m.答:树高为(1+)米.故选C.10、A【解析】

根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A本题考查平行四边形的判定,能理解每个图的作法是本题解题关键11、B【解析】

先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),则B(c,b),E(c,),设D(x,y),∵D和E都在反比例函数图象上,∴xy=k,即,∵四边形ODBC的面积为3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案为:B.本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.12、B【解析】

根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

先提公因式,再套用平方差公式.【详解】ax2-a=a(x2-1)=故答案为:掌握因式分解的一般方法:提公因式法,公式法.14、【解析】

由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.【详解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案为-.本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.15、a≥1.【解析】

根据平方根的定义列出不等式计算即可.【详解】根据题意,得解得:故答案为考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.16、1【解析】

根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.【详解】∵点(a,b)在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.17、56【解析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案为56.18、x≥1且x≠1【解析】

根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解析】

根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.【详解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.20、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.【解析】

(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答②观察函数图象与△ACQ为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知抛物线对称轴为x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴当x=,DE+DF有最大值为;答图1答图2(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);②<t<.此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.21、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或【解析】分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;(2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.详解:(1)∵直线与双曲线()都经过点B(-1,4),,,∴直线的表达式为,双曲线的表达方式为.(2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),,∵,,点P在双曲线上,∴点P的坐标为或.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.22、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).【解析】

(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值为.本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.23、裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.24、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值为或10+2.【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴抛物线的顶点坐标为(m,2m﹣2),故答案为(m,2m﹣2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,∵AB∥x轴,且AB=1,∴点B的坐标为(m+2,1a+2m﹣2),∵∠ABC=132°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),∵点C在抛物线y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣;(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.综上所述:m的值为或10+2.点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论