安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题_第1页
安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题_第2页
安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题_第3页
安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题_第4页
安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市一中、六中、八中2024年高三高考适应性考试(零诊)数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则()A. B.C. D.2.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A. B. C. D.3.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(

)A. B. C.或 D.或4.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-5.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、、、、为顶点的多边形为正五边形,且,则()A. B. C. D.6.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c7.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.8.若复数满足(为虚数单位),则其共轭复数的虚部为()A. B. C. D.9.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.10.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行11.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.12.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则二、填空题:本题共4小题,每小题5分,共20分。13.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.14.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_____.15.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.16.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.18.(12分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.(1)证明://平面BCE.(2)设平面ABF与平面CDF所成的二面角为θ,求.19.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.20.(12分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.21.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.22.(10分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份);日平均气温(℃)642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

解出集合,利用交集的定义可求得集合.【详解】因为,又,所以.故选:A.【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.2、C【解析】

根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C.【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.3、D【解析】

由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.4、C【解析】

直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.5、A【解析】

利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.6、A【解析】

利用指数函数、对数函数的单调性直接求解.【详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.7、A【解析】

画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.8、D【解析】

由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi=1﹣i,∴z=,所以共轭复数=-1+,虚部为1故选D.【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.9、D【解析】

将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.10、B【解析】

根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.11、C【解析】

由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.12、B【解析】

根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,,所以可得面,设外接圆的半径为,由正弦定理可得,即,,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.14、【解析】乙不输的概率为,填.15、【解析】

利用即可建立关于的方程.【详解】设双曲线右焦点为,过右焦点且与轴垂直的直线与两条渐近线分别交于两点,则,,由已知,,即,所以,离心率.故答案为:【点睛】本题考查求双曲线的离心率,做此类题的关键是建立的方程或不等式,是一道容易题.16、【解析】

先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大.【解析】

(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画出频率分布直方图;(2)首先确定的所有可能取值,由超几何分布概率公式可计算求得每个取值对应的概率,由此得到分布列;根据数学期望的计算公式可求得期望;(3)根据中不赞成比例最大可知来自的可能性最大.【详解】(1)由频率分布表得:,即.收入在的有名,,,,则频率分布直方图如下:(2)收入在中赞成人数为,不赞成人数为,可能取值为,则;;,的分布列为:.(3)来自的可能性更大.【点睛】本题考查概率与统计部分知识的综合应用,涉及到频数、频率的计算、频率分布直方图的绘制、服从于超几何分布的随机变量的分布列与数学期望的求解、统计估计等知识;考查学生的运算和求解能力.18、(1)证明见解析(2)【解析】

(1)根据线面垂直的性质定理,可得DE//BF,然后根据勾股定理计算可得BF=DE,最后利用线面平行的判定定理,可得结果.(2)利用建系的方法,可得平面ABF的一个法向量为,平面CDF的法向量为,然后利用向量的夹角公式以及平方关系,可得结果.【详解】(1)因为DE⊥平面ABCD,所以DEAD,因为AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四边形BEDF,故DF//BE,因为BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如图空间直角坐标系,则D(0,0,0),A(4,0,0),C(0,4,0),F(4,3,﹣3),,设平面CDF的法向量为,由,令x=3,得,易知平面ABF的一个法向量为,所以,故.【点睛】本题考查线面平行的判定以及利用建系方法解决面面角问题,属基础题.19、(1)(1)不存在,理由见解析【解析】

(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为.(1)当直线的斜率不存在时,,不符合题意.当的斜率存在时,设的方程为,联立得,设,则,,,即.设,则,,,则,即,整理得,此方程无解,故的方程不存在.综上所述,不存在直线使得.【点睛】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.20、(1)(2)【解析】

(1)先利用同角的三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论