版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中PAGE1初中2022北京海淀初三(上)期中数学注意事项1.本试卷共6页,共两部分,28道小题.满分100分.考试时间120分钟.2.在试卷和答题纸上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答.第一部分选择题一、选择题(共16分,每题2分)1.一元二次方程的二次项系数、一次项系数、常数项分别是()A.3,6,4 B.3,,4 C.3,6, D.3,,2.将抛物线向上平移2个单位长度,得到的抛物线是()A. B.C. D.3.下列四幅图案中,可以由右侧的一笔画“天鹅”旋转得到的图案是()A. B.C. D.4.如图,是中线,,分别是,的中点,连接EF.若,则的长为()A. B.2 C. D.45.用配方法解方程时,结果正确的是()A. B.C. D.6.二次函数的x与y的部分对应值如下表:则的值是()A.1 B.2 C.5 D.107.如图,在中,,将绕点逆时针旋转得到,点的对应点分别为,连接.当点在同一条直线上时,下列结论不正确的是()A. B.C. D.8.如图,已知关于x的一元二次方程的两根在数轴上对应的点分别在区域①和区域②,区域均含端点,则k的值可能是()A. B. C. D.第二部分非选择题二、填空题(共16分,每题2分)9.若1是关于x的方程的根,则a的值为___________.10.已知的周长为,则的长为___________.11.若二次函数y=ax2+bx+c的图象如图所示,则ac_____0(填“>”或“=”或“<”).12.如图,等边绕顶点逆时针旋转得到,连接,则___________.13.若关于x的一元二次方程有两个相等的实数根,则k的值为___________.14.如图是某停车场的平面示意图,停车场外围的长为30米,宽为18米.停车场内车道的宽都相等.停车位总占地面积为288平方米.设车道的宽为x米,可列方程为___________.15.点在二次函数的图象上.若,写出一个符合条件的a的值___________.16.甲、乙、丙三名同学每人抽取一张卡片,每张卡片上有一个形如的二次函数的解析式,其中只有一人与其他两人抽到的解析式不同.下面是他们对抽到的解析式所对应的图象的描述:甲:开口向下;乙:顶点第三象限;丙:经过点(,),(,).根据描述可知,抽到与其他两人解析式不同的是___________(填“甲”,“乙”或“丙”).三、解答题(本题共68分,第17题8分,18-25题每题5分,第26题6分,第27、28题每题7分)17.解方程:(1);(2).18.如图,在中,,将绕点C顺时针旋转得到,点A与点D对应,点B与点E对应.(1)依题意补全图形;(2)直线AB与直线DE的位置关系为___________.19.已知是方程的一个根,求代数式的值.20.如图,在中,,将绕点A顺时针旋转得到,交于点F.若,求的长.21.在平面直角坐标系中,抛物线经过和两点.(1)求该抛物线的解析式;(2)该抛物线的对称轴为___________.22.已知关于x的一元二次方程.(1)求证:该方程总有两个实数根;(2)若该方程有一个实数根小于2,求m的取值范围.23.在平面直角坐标系xOy中,二次函数图象顶点为A,与x轴正半轴交于点B.(1)求点B的坐标,并画出这个二次函数的图象;(2)一次函数的图象过A,B两点,结合图象,直接写出关于x的不等式的解集.24.如图,在△ABC中,,BD为△的中线.,,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若,,求DE的长.25.探照灯的内部可以看成是抛物线的一部分经过旋转得到的抛物曲面.其原理是过某一特殊点的光线,经抛物线反射后所得的光线平行于抛物线的对称轴,我们称这个特殊点为抛物线的焦点.若抛物线的表达式为,则抛物线的焦点为.如图,在平面直角坐标系中,某款探照灯抛物线的表达式为,焦点为F.(1)点F的坐标是___________;(2)过点F的直线与抛物线交于A,B两点,已知沿射线FA方向射出的光线,反射后沿射线射出,所在直线与x轴的交点坐标为.①画出沿射线方向射出的光线的反射光线;②所在直线与x轴的交点坐标为___________.26.在平面直角坐标系中,已知抛物线.(1)求抛物线的顶点坐标(用含的式子表示);(2)已知点.①当抛物线过点时,求的值;②点的坐标为.若抛物线与线段恰有一个公共点,结合函数图象,直接写出的取值范围.27.在等边△ABC中,将线段CA绕点C逆时针旋转α(0°<α<30°)得到线段CD,线段CD与线段AB交于点E,射线AD与射线CB交于点F.(1)①依题意补全图形;②分别求∠CEB和∠AFC的大小(用含α的式子表示);(2)用等式表示线段BE,CE,CF之间数量关系,并证明.28.在平面直角坐标系xOy中,已知点.对于点给出如下定义:当时,若实数k满足,则称k为点P关于点A的距离系数.若图形M上所有点关于点A的距离系数存在最小值,则称此最小值为图形M关于点A的距离系数.(1)当点A与点O重合时,在中,关于点A的距离系数为1的是___________;(2)已知点,若线段BC关于点距离系数小于,则m的取值范围为___________;(3)已知点,其中.以点T为对角线的交点作边长为2的正方形,正方形的各边均与某条坐标轴垂直,点D,E为该正方形上的动点,线段的长度是一个定值().①线段关于点A的距离系数的最小值为___________;②若线段关于点A距离系数的最大值是,则的长为___________.
参考答案第一部分选择题一、选择题(共16分,每题2分)1.【答案】D【解析】【分析】根据一元二次方程的一般式可直接进行求解.【详解】解:一元二次方程的二次项系数、一次项系数、常数项分别是3,,;故选D.【点睛】本题主要考查一元二次方程的一般式,熟练掌握一元二次方程的一般式是解题的关键.2.【答案】A【解析】【分析】直接利用二次函数图象的平移规律:上加下减,平移即可求解.详解】解:将抛物线向上平移2个单位长度,得到的抛物线是,即,故选A.【点睛】本题考查了二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.3.【答案】A【解析】【分析】根据旋转的性质即可解答.【详解】解:可以下图一笔画“天鹅”旋转得到的图案是.故选A.【点睛】本题主要考查了旋转的性质,旋转只改变了图形的方向、不改变形状.4.【答案】B【解析】【分析】根据三角形中线求出,再根据三角形中位线定理即可求出.【详解】解:∵是的中线,,∴,∵点E,F分别是,的中点,∴,故选:B.【点睛】本题考查了三角形的中线定义、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5.【答案】B【解析】【分析】根据完全平方公式,结合等式的性质,进行配方即可.【详解】解:∵,∴,∴,∴,故选:B.【点睛】本题考查了配方法,熟练掌握配方法的求解步骤是解题的关键.6.【答案】C【解析】【分析】根据表格数据可知,抛物线的对称轴为,由抛物线的对称性可知,时的值与时的值相等,即可求解.【详解】解:有表格可知,当,,当,,由抛物线的对称性可知,抛物线的对称轴为,∴时的值与时的值相等,∴时的值为5,即的值为5,故选:C.【点睛】此题主要考查了二次函数图象的对称性,解题关键是熟练掌握二次函数的性质.7.【答案】D【解析】【分析】将绕点逆时针旋转得到,可得再证明再逐一分析即可.【详解】解:∵将△ABC绕点逆时针旋转得到△DEC,∴故A不符合题意;∴∴故B不符合题意;∴∴∴故C不符合题意;∵∴故D符合题意;故选D.【点睛】本题考查的是旋转的性质,全等三角形的性质,等腰三角形的性质,勾股定理的应用,掌握“旋转的性质”是解本题的关键.8.【答案】C【解析】【分析】先确定方程两根的范围,然后再确定抛物线的对称轴,最后根据抛物线与x轴的两个交点关于对称轴对称即可解答.【详解】解:∵关于x的一元二次方程的两根在数轴上对应的点分别在区域①和区域②,区域均含端点,∴一个根,另一个根,∵抛物线的对称轴是直线,∴抛物线与x轴的两个交点关于对称轴对称,∴k的值可能为1.故选:C.【点睛】本题主要考查了二次函数图像与一元二次方程关系,掌握二次函数图像与x轴的交点关于对称轴对称是解答本题的关键.二、填空题(共16分,每题2分)9.【答案】【解析】【分析】把1代入方程即可.【详解】解:把1代入方程得,∴故答案为:1.【点睛】本题主要考查已知方程根求参数的做法,能够正确代入方程计算是解题关键.10.【答案】4【解析】【分析】根据平行四边形对边相等,即可求解.【详解】解:∵的周长为,∴,∴,∴,故答案为:.【点睛】本题考查了平行四边形的性质,掌握平行四边形的对边相等是解题的关键.11.【答案】<【解析】【分析】首先由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,进而判断ac与0的关系.【详解】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点在y轴的正半轴上,∴c>0,∴ac<0.故答案为<.【点睛】考查二次函数y=ax2+bx+c系数符号的确定.二次项系数a决定抛物线的开口方向和大小.常数项c决定抛物线与y轴交点.12.【答案】【解析】【分析】根据旋转的性质得出,根据等边三角形的性质可得,等量代换得到,由旋转得出,继而可得,根据三角形内角和定理,以及等腰三角形的性质得出.【详解】解:∵等边绕顶点逆时针旋转得到,∴,,∵,是等边三角形,∴,,,∴,,∴,∴,∴.故答案为:.【点睛】本题考查了等边三角形的性质,等边对等角,旋转的性质,三角形内角和定理,掌握以上知识是解题的关键.13.【答案】【解析】【分析】由关于x的一元二次方程有两个相等的实数根,则方程的判别式,据此列方程,解方程可得答案.【详解】∵关于x的一元二次方程有两个相等的实数根,∴方程的判别式:,∴,故答案为:.【点睛】本题考查的是一元二次方程的根的判别式,掌握“一元二次方程有两个相等的实数根,则”是解题的关键.14.【答案】【解析】【分析】由停车场外围的长为30米,宽为18米.及车道及入口都是长为x米宽,将两个停车位合在一起,可得出停车位的面积等于停车场的面积减去车道的面积,列出方程即可.【详解】解:依题意得,故答案为:【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.【答案】3(答案不唯一)【解析】【分析】二次函数开口向上,离对称轴越远的点函数值越大,找一个离对称轴比1大的数即可.【详解】解:∵二次函数开口向上,∴离对称轴:直线越远的点的函数值越大,A点离对称轴水平距离为1,故a可以等于3.故答案为3(答案不唯一)【点睛】本题主要考查二次函数图像的性质,熟练运用函数图像的最低点及性质比大小是解题关键.16.【答案】甲【解析】【分析】根据可知,函数图象过,再根据丙的描述,画出图象即可进行判断.【详解】解:,当时,;∴图象过,根据丙的描述,可得的图象如下:∴抛物线的开口朝上,顶点在第三象限,∴乙,丙两位同学描述的是同一函数图象,∴抽到与其他两人解析式不同的是:甲;故答案为:甲.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本题共68分,第17题8分,18-25题每题5分,第26题6分,第27、28题每题7分)17.【答案】(1),(2),【解析】【分析】(1)根据直接开平方法进行求解方程即可;(2)根据因式分解法进行求解方程即可.【小问1详解】解:∴,;【小问2详解】解:或∴.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.18.【答案】(1)见解析(2)AB⊥DE【解析】【分析】(1)直接根据旋转的性质作图即可;(2)如图:延长交于点F,然后根据旋转的性质可得,然后根据对顶角相等并结合即可解答.【小问1详解】解:如图即为所求:.【小问2详解】解:延长交于点F由旋转可得:,∵,∵∵,∴,∴,即.故答案为:.【点睛】本题主要考查了旋转作图和旋转的性质等知识点,灵活运用旋转的性质成为解答本题的关键.19.【答案】3【解析】【分析】把代入方程,求出,再将代数式进行化简,利用整体思想进行计算即可.【详解】19.解:∵是方程的一个根,∴.∴.原式.【点睛】本题考查一元二次方程的解得定义,以及利用整体思想求代数式的值.熟练掌握一元二次方程的解的概念是解题的关键.20.【答案】【解析】【分析】利用旋转的性质,得到,为等腰直角三角形,利用勾股定理进行求解即可.【详解】解:∵绕点A顺时针旋转得到,∴.∵,∴.∵,∴.∵,∴是等腰直角三角形.∴.【点睛】本题考查旋转的性质,勾股定理.熟练掌握旋转的性质和勾股定理是解题的关键.21.【答案】(1)(2)【解析】【分析】(1)用待定系数法求函数解析式即可;(2)将抛物线的解析式化为顶点式,即可得出答案.【小问1详解】解:∵抛物线经过和两点,∴,解得:,∴抛物线的解析式为:.【小问2详解】解:∵,∴抛物线的对称轴为.故答案:.【点睛】本题主要考查了求二次函数解析式,对称轴,熟练掌握待定系数法求抛物线解析式的一般步骤,是解题的关键.22.【答案】(1)见解析(2)【解析】【分析】(1)求得该一元二次方程根的判别式大于等于零即可证明结论;(2)先求出该方程的解,然后令一个实数根小于2,然后求解不等式即可解答.【小问1详解】证明:由题意,.∴该方程总有两个实数根.【小问2详解】(2)解:解方程,得:,.∵方程有一个实数根小于2,∴.∴.【点睛】本题主要考查了一元二次方程根的判别式、解一元二次方程等知识点,当一元二次根的判别式大于等于零,则该方程有两个不相等的实数根或相等的实数根.23.【答案】(1)(2,0),画图见解析(2)【解析】【分析】(1)令,得出,然后解方程即可求出点B的坐标;(2)先在平面直角坐标系中画出一次函数的图象,然后观察函数图象即可得出答案.【小问1详解】解:令,则,解得,,∴B点坐标为(2,0),列表得:x0123y3003画图得:【小问2详解】解:如图,观察图象可知:关于x的不等式的解集为.【点睛】本题考查了抛物线与x轴的交点,二次函数与不等式的关系,数形结合是解题的关键.24.【答案】(1)见解析(2)【解析】【分析】(1)利用对边平行且相等证平行四边形,再通过直角三角形斜边上的中线的性质判定即可.(2)连接DE,根据菱形的性质利用勾股定理求解即可.【小问1详解】证明:∵,,∴四边形为平行四边形.∵,BD为AC边上的中线,∴,∴四边形为菱形.【小问2详解】解:连接DE交BC于O点,如图.∵四边形为菱形,,∴.∵,∴.∴.∴.∴.【点睛】本题主要考查菱形的判定及性质,能够熟练运用菱形的性质是解题关键.25.【答案】(1)(2)①见解析,②【解析】【分析】(1)根据题意得出,即可确定点F的坐标;(2)①根据题意确定轴,得出,经抛物线反射后所得的光线平行于y轴,轴,据此作出平行线即可;②设直线的解析式为,利用待定系数法确定直线AB的解析式,然后与联立求解即可得出结果.【小问1详解】解:根据题意得,,∴,∴,故答案为:;【小问2详解】由题意可知抛物线的对称轴是y轴,∴经抛物线反射后所得的光线平行于抛物线的对称轴,即经抛物线反射后所得的光线平行于y轴,∴轴∵所在的直线与x轴的交点坐标为,∴A点的横坐标为4,纵坐标为,∴,①经抛物线反射后所得的光线平行于y轴,∴轴∴画出沿射线方向射出的光线的反射光线,如下图所示:②设直线的解析式为,把、代入,得,解得:∴直线的解析式为,由题意可知,直线与抛物线交于A、B两点,把代入整理得,解得:,,∵点B在y轴的左侧,∴B点的横坐标为,∵轴,∴所在直线与x轴的交点坐标为,故答案为:.【点睛】题目主要考查二次函数的应用及利用待定系数法求一次函数解析式,一次函数与二次函数的综合问题等,理解题意,综合运用一次函数与二次函数的性质是解题关键.26.【答案】(1)(2)①,,②或【解析】【分析】(1)将解析式化为顶点式,即可求解;(2)①将点代入解析式,解一元二次方程,即可得的值;②根据①的结论,结合图形即可求解.【小问1详解】解:∵,∴抛物线的顶点坐标为.【小问2详解】①∵点在抛物线上,∴.∴.解得,.②解:抛物线的对称轴为,点的坐标为,,根据①可得,点在抛物线上,,.当时,点在对称轴的右侧,此时抛物线与线段恰有一个公共点,如图,当时,点在对称轴的左侧,此时抛物线与线段恰有一个公共点,如图,综上所述,或.【点睛】本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.27.【答案】(1)①见解析,②∠CEB=60°+α,∠AFC=(2)CF=BE+CE,见解析【解析】【分析】(1)①按要求补全图形即可,②利用等边三角形及旋转的性质结合外角,内角和解题即可.(2)CF=BE+CE,延长EA至点G使得EG=CE,运用截长补短方法解题即可.【小问1详解】解:①补全图形,如图.②解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.∵线段CA绕点C逆时针旋转α得到线段CD,∴CA=CD,∠ACD=α.∴∠CAD=∠CDA==.∴∠CEB=∠BAC+∠ACD=60°+α.∴∠AFC=180°-∠CAD-∠ACB=.【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肛门癌病因介绍
- 肝炎双重感染病因介绍
- 《财务管理筹资方式》课件
- 六年级上册英语期中测试卷(3)-1小学英语教学教材课件
- 文书模板-《旅行社年终总结工作预案》
- 物流管理基础课件 情境3子情境2 供应链管理
- 男性特纳综合征病因介绍
- 溃疡性口炎病因介绍
- 复分解反应课件
- (高考英语作文炼句)第1篇译文老师笔记
- 第六单元名著导读《简-爱》一等奖创新教学设计-1
- 广东广州2020年中考语文现代文阅读真题
- 云计算数据中心设备配清单
- 体检中心运用PDCA降低体检中心体检者漏检率品管圈成果汇报书
- 物业安全检查记录表资料
- ASME B16.5标准法兰尺寸表
- 护理操作并发症
- 周海东个人材料
- 乌鲁木齐市地铁空气源热泵节能改造可行性方案
- 诸子的生活世界知到章节答案智慧树2023年四川大学
- 珠宝鉴赏知到章节答案智慧树2023年同济大学
评论
0/150
提交评论