2025年吉林省舒兰一中蛟河一中等百校联盟学业水平考试数学试题试卷含解析_第1页
2025年吉林省舒兰一中蛟河一中等百校联盟学业水平考试数学试题试卷含解析_第2页
2025年吉林省舒兰一中蛟河一中等百校联盟学业水平考试数学试题试卷含解析_第3页
2025年吉林省舒兰一中蛟河一中等百校联盟学业水平考试数学试题试卷含解析_第4页
2025年吉林省舒兰一中蛟河一中等百校联盟学业水平考试数学试题试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年吉林省舒兰一中,蛟河一中等百校联盟学业水平考试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.2.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种3.已知集合,集合,若,则()A. B. C. D.4.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.365.i是虚数单位,若,则乘积的值是()A.-15 B.-3 C.3 D.156.已知函数,则函数的图象大致为()A. B.C. D.7.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.129.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.10.已知函数则函数的图象的对称轴方程为()A. B.C. D.11.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.12.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,则的最小值是________.14.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.16.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.18.(12分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.19.(12分)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围.20.(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.21.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.22.(10分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.2.C【解析】

先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.3.A【解析】

根据或,验证交集后求得的值.【详解】因为,所以或.当时,,不符合题意,当时,.故选A.本小题主要考查集合的交集概念及运算,属于基础题.4.D【解析】

由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D本题考查等差数列的性质,考查等差数列的前项和.5.B【解析】,∴,选B.6.A【解析】

用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.故选:A本题考查了函数图像的性质,属于中档题.7.D【解析】

利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.8.C【解析】

由开始,按照框图,依次求出s,进行判断。【详解】,故选C.框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。9.A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.10.C【解析】

,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.11.A【解析】

由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.12.B【解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.14.必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.15.【解析】

由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为本题主要考查了正弦定理和余弦定理的应用,属于中档题.16.或【解析】

用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】

(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.18.(1)证明见解析;(2)【解析】

(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、、所在直线分别为、、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可【详解】证明:如图,连接交于点,连接,点为的中点,点为的中点,点为的重心,则,,,又平面,平面,平面;,,,,,,可得,又,则以、、所在直线分别为、、轴建立空间直角坐标系,则,,,,,,.设平面的一个法向量为,由,取,得.设直线与平面所成角为,则.直线与平面所成角的正弦值为.本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记19.(1)(2)【解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)∵函数和的图象关于原点对称,∴,∴原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需,解得,的取值范围是.20.(1).(2)【解析】

(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,构造函数g(x)=x2+(t﹣2)x﹣tlnx,结合导数及函数的性质可求.【详解】(1),x>0,由题意可得,0,解可得t=﹣4,∴,易得,当x>2,0<x<1时,f′(x)>0,函数单调递增,当1<x<2时,f′(x)<0,函数单调递减,故当x=1时,函数取得极大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0时恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,则,(i)当t≥0时,g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)当﹣2<t<0时,g(x)在()上单调递减,在(0,),(1,+∞)上单调递增,此时g(1)=t﹣1<﹣1不合题意,舍去;(iii)当t=﹣2时,g′(x)0,即g(x)在(0,+∞)上单调递增,此时g(1)=﹣3不合题意;(iv)当t<﹣2时,g(x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)=t﹣1<﹣3不合题意,综上,t≥1时,f(x)≥2恒成立.本题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.21.(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】

(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论