版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版七年级上册数学
重难点突破
知识点梳理及重点题型巩固练习
《基本平面图形》全章复习与巩固(提高)知识讲解
【学习目标】
1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;
2.掌握圆、扇形及多边形的概念及相关计算;
3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;
4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单
的图形.
【知识网络】
线段的大小比较.
直线、射线、线段.
两点确定一条直线,
两点之间、线段最短.
基
本
平
面度分秒的换算
图
形
多边形和圆的初步认识
【要点梳理】
要点一、线段、射线、直线
1.直线,射线与线段的区别与联系
类别、直线射线
图形AB'AB'AB1
①两个大写字母(表①表示两端点的两
①两个大写字母;
表示方法示端点的字母在前);个大写字母;②一个
②一个小写字母
②一个小写字母小写字母
端点个数无1个2个
延伸性向两方无限延伸向一方无限延伸不可延伸
性病两点确定一条五歧两点之间,段段最短
度-不可以不可以可以
作图叙述过4、8作直线48以4为端点作射线48连接48
2.基本性质
(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.
要点诠释:
①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可
以了,因为如果把木条看作一条直线,那么两点可确定一条直线.
②连接两点间的线段的长度,叫做两点的距离.
3.画一条线段等于已知线段
(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.
(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:
4.线段的比较与运算
(1)线段的比较:
比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.
(2)线段的和与差:
如下图,有AB+BC=AC,或AC=a+b;AD=AB-BDO
aAaBbC
°ADB
(3)线段的中点:
把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:AM=MB=-AB
2
AMB
要点诠释:
①线段中点的等价表述:如上图,点M在线段AB上,且有AM=」A3,则点M为线段
2
AB的中点.
②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,
点M,N,P均为线段AB的四等分点.
9®••®
AMNPB
AM=MN=NP=PB=-AB
4
要点二、角
1.角的度量
(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这
两条射线是角的两条边;止匕外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.
(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶
点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:
要点诠释:
①角的两种定义是从不同角度对角进行的定义;
②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.
(3)角度制及角度的换算
1周角=360°,1平角=180°,1°=60',1'=60",以度、分、秒为单位的角的度量
制,叫做角度制.
要点诠释:
①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.
②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘
法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.
③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一
成60.
(4)角的分类:
NB锐角直角钝角平角周角
范围0<ZP<90°Ze=90°90°<Z3<180°ze=i8o°Z3=360°
(5)画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0〜180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
2.角的比较与运算
(1)角的比较方法:①度量法;②叠合法.
(2)角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:
如下图,因为0C是/A0B的平分线,所以/1=/2=工NA0B,或NAOB=2N1=2N2.
2
类似地,还有角的三等分线等.
3.方位角
以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.
要点诠释:
(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确
定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.
(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫
做东南方向,南偏西45°通常叫做西南方向.
(3)方位角在航行、测绘等实际生活中的应用十分广泛.
要点三、多边形和圆的初步认识
1.多边形及正多边形:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平
面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:
五边形正六边形
要点诠释:
(1)n边形有n个顶点、n条边,对角线的条数为迎二包.
2
(2)多边形按边数的不同可分为三角形、四边形、五边形、六边形等.
2.圆及扇形:
(1)圆:如图,在一个平面内,线段0A绕它固定的一个端点。旋转一周,另一个端点A
所形成的图形叫做圆,固定的端点。叫做圆心,线段0A叫做半径.以点0为圆心的圆,记
作“。0”,读作“圆0”.
要点诠释:圆心确定圆的位置,半径确定圆的大小.
(2)扇形:由一条弧AB和经过这条弧的端点的两条半径0A,0B所组成的图形叫做扇形.
如下图:
要点诠释:扇形0AB的面积公式:=生£=1笈;扇形(^的弧长公式:/=竺四.
6,3602180
【典型例题】
类型一、线段、射线、直线
◎1.下列判断错误的有()
①延长射线0A;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段
AB的中点;④连接两点间的线段,叫做两点间的距离.
A.0个B.2个C.3个D.4个
【答案】D
【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,
射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而
线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才
是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的
本质属性不同.
【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.
举一反三:
【变式】平面上有五条直线,则这五条直线最多有交点,最少有个交点.
【答案】10,0.
类型二、角
▼2.(2016春•南充校级期中)如图:若NAOB与/B0C是一对邻补角,0D平分NA0B,
OE在NBOC内部,并且NBOE=L/COE,ZDOE=72°.则NCOE的度数是.
【思路点拨】设NEOB=x度,NE0C=2x度,把角用未知数表示出来,建立x的方程,用代数
方法解几何问题是一种常用的方法.
【答案】72°.
【解析】解:设NEOB=x,则NE0C=2x,
则NB0D=L(180°-3x),
2
则NBOE+NBOD=/DOE,
即x+1(180°-3x)=72°,
2
解得x=36°,
故/E0C=2x=72°.
故答案为:72°.
【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,
求解.角平分线的运用,为解此题起了一个过渡的作用.
举一反三:
【变式】(2014•陆川县校级模拟)在同一平面内,若/A0B=90°,ZB0C=40°,则NA0B的
平分线与NB0C的平分线的夹角等于.
【答案】25°或65°.
解:本题分两种情况讨论:
(1)当0C在三角形内部时,如图1,
图1
ZA0B=90°,ZB0C=40°,0D,0E是/AOB的与NBOC的平分线,
/.ZAOD=ZDOB=1ZAOB=1X9O°=45°,ZBOE=ZEOC=lzBOC=1X400=20°,
2222
/.ZD0E=ZD0B-ZE0B=45°-20°=25°;
(2)当OC在三角形外部时,如图2,
c
ZA0B=90°,ZB0C=40°,OD,OE是NAOB的与NBOC的平分线,
AZAOD=ZDOB=1ZAOB=1X9O°=45°,ZB0E=ZEOC=1ZBOC=1X40°=20°,
2222
AZD0E=ZD0B+ZE0B=45°+20°=65°,
故答案为:25°或65°.
C3.(2015•深圳校级模拟)如图,C岛在A岛的北偏东45。方向,C岛在B岛的北偏西
25°方向,则从C岛看A、B两岛的视角NACB的度数是()
【思路点拨】根据两直线平行,同旁内角互补求得NC的度数即可.
【答案】A
【解析】解:如图,连接AB,
北
:两正北方向平行,
ZCAB+ZCBA=180°-45°-25°=110°,
AZACB=180°-110°=70°.
【总结升华】本题考查了方向角,解决本题的关键是利用平行线的性质.
举一反三:
【变式】考点办公室设在校园中心。点,带队老师休息室A位于。点的北偏东45。,某考
室B位于0点南偏东60°,请在图⑴中画出射线0A、0B,并计算NA0B的度数.
北
o
西东
南
(1)
【答案】
解:如图(2),以。为顶点,正北方向线为始边向东旋转45°,得0A;以0为顶点,正南方
向线为始边向东旋转60°,得0B,则NA0B=180°-(45°+60°)=75。.
【答案与解析】
解:设时针转过的度数为x时,与分针第一次重合,依题意有
12x=90+x
解得工=史
11
答:时针转过时,与分针第一次重合•
【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及
问题来解决.
类型三、利用数学思想方法解决有关线段或角的计算
1.方程的思想方法
3
.如图所示,B、C是线段AD上的两点,且CD=-A3,AC=35cm,BD=44cm,求
2
线段AD的长.
ABCD
【答案与解析】
3
解:设AB=xcm,则C£)=—%cm
2
、3
BC=(35-x)cm或(44--x)cm
3
于是列方程,得35—x=44——%
2
解得:x=18,BPAB=?18(cm)
所以BC=35-x=35T8=17(cm)
33
CD=一九=—xl8=27(cm)
22
所以AD=AB+BC+CD=18+17+27=62(cm)
【总结升华】根据题中的线段关系,巧设未知数,列方程求解.
2.分类的思想方法
6.同一直线上有A、B、C、D四点,己知AD=°DB,AC=-CB,且CD=4cm,求AB
95
的长.
【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小.
【答案与解析】
59
解:利用条件中的AD=—DB,AC=—CB,设DB=9x,CB=5y,
95
则AD=5x,AC=9y,分类讨论:
(1)当点D,C均在线段AB上时,如图所示:
-----------9y-----------•+,-5y
AB=AD+DB=14x,AB=AC+CB=14y,x=y
*.*CD=AC—AD=9y—5x=4x=4,x=l,AB=14x=14(cm).
Q
(2)当点D,C均不在线段AB上时,如图所示:方法同上,解得A5=—(cm).
7
112
(3)如图所示,当点D在线段AB上而点C不在线段AB上时,方法同上,解得AB=——(cm).
53
C
-DB5y
---------------L-------9y-----------------
(4)如图所示,当点C在线段AB上而点D不在线段AB上时,方法同上,解得AB=——(cm).
B
Q]]2
综上可得:AB的长为14cm,一cm,---cm.
753
【总结升华
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能工地设备管理方案
- 学校垃圾分类宣传及实践方案
- 钢筋施工材料采购与管理方案
- 旋挖桩施工中的安全隐患排查方案
- 环保型大坝加固施工方案
- 电厂进出道路硬化方案
- 高层建筑雨污水管道优化方案
- 商业建筑天面防水解决方案
- 幼儿园分餐制操作流程与标准
- 2023年护理行业工作总结与展望
- 辽宁省盘锦市第一完全中学2023-2024学年八年级上学期期中数学试卷
- DB13-T 5958-2024 金属非金属露天矿山采场边坡安全监测技术规范
- 七十岁老人换驾照考三力测试题库
- 医院康复科培训课件:《平衡功能评定及训练》
- 2024《整治形式主义为基层减负若干规定》全文课件
- 2025届高三数学一轮复习策略讲座
- 北京市八中2023-2024学年高二上学期期中生物试题 含解析
- 职能科室对医技科室医疗质量督查记录表(检验科、放射科、超声科、功能科、内镜室)
- PCBA审核表实用模板
- 后进生转化课件
- 螺纹规中径及公差计算
评论
0/150
提交评论