2025年湖北省三市联考高考数学试题山东卷冲刺训练解析含解析_第1页
2025年湖北省三市联考高考数学试题山东卷冲刺训练解析含解析_第2页
2025年湖北省三市联考高考数学试题山东卷冲刺训练解析含解析_第3页
2025年湖北省三市联考高考数学试题山东卷冲刺训练解析含解析_第4页
2025年湖北省三市联考高考数学试题山东卷冲刺训练解析含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年湖北省三市联考高考数学试题山东卷冲刺训练解析注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.42.集合,,则()A. B. C. D.3.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.4.已知函数,若,则的值等于()A. B. C. D.5.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.1006.已知函数,则()A.1 B.2 C.3 D.47.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种8.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.9.()A. B. C. D.10.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.11.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.12.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正实数满足,则的最小值为.14.记等差数列和的前项和分别为和,若,则______.15.的展开式中的系数为__________.16.展开式中的系数为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面为直角梯形,,,,,,,分别为,的中点.(1)求证:.(2)若,求二面角的余弦值.18.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.20.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.21.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.22.(10分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.2.A【解析】

解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.3.D【解析】

利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.4.B【解析】

由函数的奇偶性可得,【详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数5.D【解析】

由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.6.C【解析】

结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.7.C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.8.B【解析】

由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.9.A【解析】

分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A本题考查复数的除法运算,属于基础题.10.D【解析】

首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.D【解析】

根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.12.A【解析】

过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】

由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.14.【解析】

结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.15.3【解析】

分别用1和进行分类讨论即可【详解】当第一个因式取1时,第二个因式应取含的项,则对应系数为:;当第一个因式取时,第二个因式应取含的项,则对应系数为:;故的展开式中的系数为.故答案为:3本题考查二项式定理中具体项对应系数的求解,属于基础题16.【解析】

把按照二项式定理展开,可得的展开式中的系数.【详解】解:,故它的展开式中的系数为,故答案为:.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】

(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角.【详解】(1)证明:连接,,.,,平面.平面,平面平面.,为的中点,.平面平面,平面.平面,.为斜边的中点,,(2),由(1)可知,为等腰直角三角形,则.以为坐标原点建立如图所示的空间直角坐标系,则,,,,则,记平面的法向量为由得到,取,可得,则.易知平面的法向量为.记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为.本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角.在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解.18.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.19.(1)见解析(2)见解析【解析】

(1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【详解】解析:(1),,当时,,单调递减,,,此时有1个零点;当时,无零点;当时,由得,由得,∴在单调递减,在单调递增,∴在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,,求导易得,此时在,上各有1个零点.综上可得时,没有零点,或时,有1个零点,时,有2个零点.(2)令,则,当时,;当时,,∴.令,则,当时,,当时,,∴,∴,,∴,即.本题考查了导数判断函数零点问题,考查了运用导数证明不等式问题,考查了分类的数学思想.本题的难点在于第二问不等式的证明中,合理设出函数,通过比较最值证明.20.另一个特征值为,对应的一个特征向量【解析】

根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.21.(1);(2).【解析】

(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求得,利用余弦定理结合基本不等式求出的取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论