版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市揭西县2022年毕业升学考试模拟卷数学卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B. C. D.2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(
)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m3.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1B.2C.1D.–24.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80725.不等式组的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤46.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A. B. C. D.7.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.8.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是99.已知是一个单位向量,、是非零向量,那么下列等式正确的是()A. B. C. D.10.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个11.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.12.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1个 B.2个 C.1个 D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.14.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.15.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.16.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.17.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.18.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.20.(6分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).21.(6分)计算:(1)(2)22.(8分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.23.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.24.(10分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)25.(10分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.26.(12分)如图,抛物线经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.27.(12分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.2、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将1.11111111134用科学记数法表示,故选C.考点:科学记数法3、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.4、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.5、D【解析】试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.6、C【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.【详解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故选:C.【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.7、B【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.8、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.9、B【解析】
长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A.由于单位向量只限制长度,不确定方向,故错误;B.符合向量的长度及方向,正确;C.得出的是a的方向不是单位向量,故错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.10、B【解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,,抛物线的顶点坐标是,抛物线对称轴为直线,,,则①错误,②正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,③正确;由抛物线对称性,抛物线与轴的另一个交点是,则④错误;不等式可以化为,抛物线顶点为,当时,,故⑤正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.11、A【解析】
由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.12、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】一副扑克牌共有54张,其中只有4张K,∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、2a﹣b.【解析】
直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.【详解】解:由数轴可得:b﹣a<0,a>0,则|b﹣a|+=a﹣b+a=2a﹣b.故答案为2a﹣b.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.15、11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.16、a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.17、1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.18、1【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)①证明见解析;②25;(2)为或50+1.【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵点F是AB的中点,∴AF=AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵点F是AB的中点,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①当点在线段CB上时,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面积为;②当点在线段CB的延长线上时,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,综上所述,△ADE的面积为或.【点睛】此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.20、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.21、(1);(2)1.【解析】
(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=;(2)原式.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.22、(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)【解析】
(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.23、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【解析】
(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.24、见解析【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;25、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】
(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工矿行业产品销售协议样本一
- 2024年居家服务人员劳动协议版B版
- 2024年度知识产权质押合同权利与义务3篇
- 2024年废料买卖协议详细模板版
- 2024年度国际环境保护合同2篇
- 2024年度城市基础设施建设项目招标投标合同2篇
- 2024年人力资源服务合同:企业人才招聘与培训2篇
- 2024年度短视频内容创作与版权授权协议3篇
- 二零二四年度交通工程合同3篇
- 2024年度公墓安保服务及设施升级合同2篇
- 锐角三角函数(18张PPT)
- 伍德灯的临床应用(课堂PPT)
- 钢筋弯钩长度汇总-现场检查必备
- 客户关系的维护讲义课件(共17页).ppt
- (完整版)二十四山年月日时吉凶定局详解,
- 工程项目结算稽核办法
- 华文版二年级上册写字书法
- 基层部队经常性思想工作存在的问题与对策
- 广东省二手车交易市场经营者备案登记表
- SGRQ评分方法
- 《房屋渗漏修缮技术规程》JGJ@T53-2011
评论
0/150
提交评论