版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_/盈亏问题
—......................................................................
【知识精讲+典型例题+高频真题】
知识清单方法技巧
【知识点归纳】
把若干物体平均分给一定数量的对象,并不是每次都能正好分完.如果物体还有剩余,就叫盈;如果物体
不够分,少了,叫亏.凡是研究盈和亏这一类算法的应用题就叫盈亏问题.
解盈亏问题的公式
一盈一亏的解法:(盈数+亏数)小两次每人分配数的差
双盈的解法:(大盈-小盈)・两次每人分配数的差
双亏的解法:(大亏-小亏)+两次每人分配数的差.
第二部分
例L用一根绳子绕树三圈余3尺,如果绕树4圈则差4尺,求树周长有几尺?绳长有几尺?
【答案】树周长有7尺,绳子长有24尺。
【分析】绕树三圈余3尺,如果绕树4圈则差4尺,即多绕树1圈,绳子长度就由多3尺边长少4尺,即
绳子长度增加3+4=7尺,用“多的总尺数十多绕的圈数”即可算出1圈的长度即树的周长,用“树的周长x
圈数十多(或一少)的尺数"即可算出绳子的长度。
【详解】(3+4)-(4-3)
=7+1
=7(尺)
7x3+3
=21+3
=24(尺)
答:树周长有7尺,绳子长有24尺。
【点睛】本题考查了盈亏问题的实际应用,根据题意得出盈与亏是解决本题的关键。本题也可以使用方程
法解。
例2.有一堆螺丝和螺母。如果一个螺丝配两个螺母,则多10个螺母;如果一个螺丝配三个螺母,则少6
个螺母,螺丝、螺母各多少个?
【答案】螺丝有16个,螺母有42个。
【分析】如果一个螺丝配两个螺母,则多10个螺母;如果一个螺丝配三个螺母,则少6个螺母;对比两次
的分配方法,盈10,亏6,两次分配的螺母数量差为3—2=1,则螺丝有(10+6)+(3-2)=16个,螺
母有16x2+10=42个。
【详解】(10+6)5(3-2)
=16+1=16(个)
16x2+10
=32+10=42(个)
答:螺丝有16个、螺母有42个。
【点睛】对比两次分配方法计算出盈与亏是解决本题的关键。解决这类问题要弄清楚分配的对象是谁。
例3.测量水面到桥的高度,把绳对折后垂到水面余6m,把绳三折后垂到水面余1m,求桥的高度和绳长。
【答案】桥高9米绳长30米
【详解】2折,绳子多出6x2=12(米)
3折,绳子多出1x3=3(米)
桥高:(12-3)+(3-2)=9(米)
绳长:(9+6)x2=30(米)
答:桥高9米,绳长30米。
第三部分.'
1.某单位向西北地区某村捐赠寒衣若干,每户5件,还余99件;每户增加2件,仍余33件,每户应
分多少件可以不余?
2.钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角.问小明带
了多少钱?
3.托儿所小朋友分杏,若每人分2个就多出30个;如果每人分4个,杏正好分完.阿姨买来多少个杏?
4.少先队员在校园里栽的苹果树苗是梨树苗的2倍。如果每人栽3棵梨树苗,还余2棵,如果每人栽7棵
梨树苗,少6棵。问有多少少先队员?准备栽多少棵苹果树和梨树苗?
5.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学
生,多少练习本呢?
6.老猴子给小猴子分桃,每只小猴分10个桃,就多出8个桃,每只小猴分11个桃,则多出2个桃,
那么一共有多少只小猴子?老猴子一共有多少个桃子?
7.李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买
碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?
8.小红用一根绳子来测量一棵树干的周长,把绳子三折,围一圈多1米;把绳子四折,围一圈少2米。问
绳子和树干的周长各是多少米?
9.刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行
进,上午n点到.如果希望中午12点到,那么应以怎样的速度行进?
10.学习里有铅笔若干支,奖给三好学生,若每人9支,缺15支;若每人7支缺7支。三好学生有多少人?
铅笔有多少支?
11.学校给春游的同学租了几辆车,如果每辆汽车都坐21人,总人数少5人,如果每辆汽车都坐25人,
便空出1辆汽车,求有多少同学参加春游?租几辆车正好全部坐满?
12.幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。如全部分给
小班的小朋友,每人分到8个,则缺2个。已知大班比小班多3人,问:这筐苹果共有多少个?
13.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少
学生,多少练习本呢?
14.刘老师准备把一些课外书分发给某班的同学们.若发给每位同学3本,还余11本;发给每位同学5本,
还差3本,问王老师一共有多少本课外书?该班有多少位同学?
15.动物园为猴山的猴买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余
的猴分8个,就恰好分完。问猴山有猴多少只?共买来多少个桃?
16.妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一
人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?
17.小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时
间提前2分钟到校.小强家到学校的路程是多少米?
18.甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2张信纸,乙每封信用3张信纸,
一段时间后,甲用完了所有的信封还剩下20张信纸,乙用完所有信纸还剩下10个信封,则他们每人各买
了多少张信纸?
19.学校分配宿舍,每个房间住3人,则多出20人;每房间住5人,恰好安排好。则房间有几间?
20.猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分口条鱼则正好分完,那么一共
有多少只小猫?猫妈妈一共有多少条鱼?
21.分梨的学问
某幼儿园的小朋友要发梨吃了.发梨之前,幼儿园的阿姨说了一个关于梨的个数的问题,想问一问大家.如
果谁回答正确了,就可以再奖励一个梨.阿姨的题目是这样的:"我们幼儿园进了一批新鲜的梨,现在准备
发给小朋友.如果分给幼儿园大班的小朋友,每人可以分5个,但还缺6个梨.如果分给幼儿园小班的小
朋友,每人分4个,就会多出4个梨.我们还知道,大班的小朋友人数比小班的人数少2人.你们谁来算
一下,幼儿园一共买了多少个梨?”
22.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块
砖.这个班少先队有几个人?要搬的砖共有多少块?
23.猴子分桃子,如果2只猴子各分5个,其余各分3个,则还剩余9个;如果4只猴子各分3个,
其余各分6个,则剩余10个,问:猴子有几只?桃子有几个?
24.巧克力每盒9块,软糖每盒**块,要把这两种糖分发给一些小朋友,每种糖每人一块.由于又来了
一位小朋友,软糖就要增加一盒,两种糖分发的盒数才一样多.现在又来了一位小朋友,巧克力还要增加
一盒.最后共有多少位小朋友?
25.学生划船,如每船4人,则少3只船,如每船6人,就空了2个位子,划船几人?租了几只船?
26.在桥上测量桥高,把绳子对折垂到水面,还余4米,把绳子3折垂到水面,还余1米,桥高多少米?
绳长多少米?
27.某数的8倍减153,则比其5倍多66,求某数。
28.国庆节快到了学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2
人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花
盆?
29.皮皮从家到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟60米,就可以比上课时间
提前2分钟到校,那么皮皮家距离学校多远?
30.猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共
有多少只小猫?猫妈妈一共有多少条鱼?
31.老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?
多少个苹果?
32.幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块
糖呢?
33.某校学生参加劳动,分成若干组,每组8人,觉得每组人数太少,把每组改为12人,因此减少2组,
参加劳动的学生共有多少人?
34.旅游团去住宿,如果每个房间住8人,则有一个房间缺6人,如果每个房间住6人,则有一个房间缺2
人,请问:有多少个人?一共有多少房间?
35.佳佳的奶奶买回一筐梨,分给全家人。如果佳佳和妹妹每人分4个梨,其余每人分2个梨,还多出4
个梨;如果佳佳1人分6个梨,其余每人分4个梨,又差12个梨。佳佳家有多少人?这筐梨有多少个?
36.果树队上山种果树,所需栽的苹果树苗是梨树苗的2倍,如果梨树苗每人栽3棵,还余下2棵;苹果
树苗每人栽7棵,则少6棵。问:果树专业队上山植树的有多少人?要栽多少棵苹果树和梨树?
37.筑一条公路,如果每天修240米,修完全路就得延期5天,如果每天修300米,修完全路就提前两天,
那么每天修多少米正好在规定时间完工?(即不延期,也不提前)
38.苹果个数是梨子的2倍,梨子每人分3个,余2个;苹果每人分7个,少6个。那么人数、苹果数和
梨数分别是多少?
39.同学们种树,如果每人种4棵,还差5棵;如果每人种6棵,还差17棵,问:有多少个同学?有
多少棵树?
40.有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,
有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第
二组有多少人?
41.用一根绳子测量,将绳子对折来量,井外余4米;将绳子三折来量,井外余2米。井深和绳子各多少
米?
42.智康小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3
人.问:合唱队有多少人?
43.学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有
多少间?新生有多少人?
44.用一根绳子绕树三圈,余3米,如果绕树四圈,则差4米,树周长有几米?绳长有几米?
45.阳光小学学生乘汽车到香山春游。如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多
余了一辆车,问一共有几辆汽车,有多少学生?
46.某校有一些学生寄宿在校,若每间宿舍住6人,多出34人;若每间宿舍住7人,则多出4间宿舍。问
寄宿的学生和宿舍各有多少?
47.王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可
以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?
48.同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅坐12人,
则空出10个座位。如果每张长椅上坐7人,还剩下多少学生无座位?
49.把一袋糖分给小朋友们,每人分10粒,正好分完;如果每人分16粒,就有3个小朋友分不到糖.这袋
糖有多少粒?
50.某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍
几间?住宿生几人?
51.有一个班的同学去划船,他们算一下,如果增加一条船,正好每条船坐9人,如果减少一条船,正好
每条船坐12人。问这个班共有多少人同学?
52.幼儿园老师给小朋友分糖果,每个小朋友分5个糖果,就多出22个糖果;每个小朋友分7个糖果,就
少18个糖果,求小朋友的个数和糖果的数量是多少?
53.粉笔盒里装的白粉笔支笔是彩色粉笔的5倍,教师们每天用去白粉笔20支,彩色粉笔6支。若干天后
盒子中余下的白粉笔60支,而彩色粉笔已断用了2天,粉笔盒中原有白粉笔、彩色粉笔各多少支?
54.同学们去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人留在岸边。共有几只
船?划船的同学是多少人?
55.幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至
少可分到一块.那么糖果最多有多少块?
56.用一根绳子测量井的深度,用绳子对折来量,井外余6米;用绳子一折四来量,井外余1米。井深和
绳子各多少?
57.一次口算比赛共20道题,做对一道题得5分,做错一道题倒扣5分,不做不得分也不扣分.东东在比
赛中每道题都做了,最后考了60分.你知道东东做对了几道题吗?
参考答案:
1.8件
【详解】户数:(99-33)-2=33(户)
衣服:33x5+99=264(件)
264+33=8(件)
答:每户应分8件可以不余。
2.11元
【分析】需要转化的盈亏问题.方法一,买5支钢笔差15角,买8支钢笔差(12x8-6)=90角,这是双亏:
分差是8-5=3支,总差是90-15=75角,就是说多买3支,就多差75角;这样就可求出1支钢笔多少钱;继
而求出小明带了多少钱.方法二,买5支圆珠笔多12x5-15=45角,买8支圆珠笔多6角.这样就可求出1
支圆珠笔多少钱;继而求出小明带了多少钱.
【详解】方法一渚B转换成钢笔
钢笔的价钱:[(12x8-6)-15]+(8-5)=75+3=25(角)
小明带的钱数:25x5-15=125-15=110(角)=11(元)
方法二:都转换成圆珠笔
买5支圆珠笔多12x5—15=45角,买8支圆珠笔多6角.
圆珠笔的价钱[(12x5-15)-6]:(8-5)=39+3=13(角)
小明带的钱数13x8+6=104+6=110(角)=11(元).
3.60个
【分析】通过读题可以知道,在两种分杏的方案中,第二种方案中每人分得的4个杏比第一种方案中每人
分得的2个多了4-2=2(个),也就是第二次分杏时,相当于在实施第一种方案的基础上每人又分到2个杏,
而每人分的2个杏,又是从实施第一种方案后剩的30个杏中拿走的.概括地说,就是每人分2个杏,一共
分了30份.根据这个分析可以求出这个托儿所小朋友的人数,再根据小朋友的人数就可以求出阿姨买来杏
的个数.
【详解】解:小朋友人数:30+(4-2)=30+2=15(人)
杏的个数:4x15=60(个)
答:阿姨买来60个杏.
也可以列综合算式:
30-?(4-2)x4=30+2x4=60(个)
答:阿姨买来了60个杏.
【点睛】盈亏问题中,如果分配方案中只有盈没有亏,可以理解为亏0.
4.2名少先队员,8棵梨树苗,16棵苹果树苗
【分析】看似有苹果树和梨树,但是题目只是将梨树分配给少先队员,第二次每人多分4棵,总共多用了8
棵,可以先求出少先队员的数量,再求出梨树的棵数,再求苹果树的棵数。
【详解】2+6+7-3
=8+4
=2(人)
3x2+2=8(棵)
8x2=16(棵)
答:有2名少先队员,准备栽8棵梨树苗和16棵苹果树苗。
【点睛】本题具有迷惑性,看似有梨树和苹果树,但其实两次分配只与梨树有关。
5.30人220本
【分析】第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相
差:70-10=60(本),这是因为两次分配中每人所发的本数相差:7-5=2(本),相差60本的学生有:
60+2=30(人).练习本有:30x5+70=220(本)(或30x7+10=220).
【详解】70-10=60(本)
7-5=2(本)
学生有:60+2=30(人)
练习本有:30x5+70=220(本)或30x7+10=220(本)
答:这个班有学生30人,练习本220本.
6.6只;68个
【分析】盈亏问题,第一次多出8个,第二次多出2个,当做“盈盈型”盈亏问题求解。
【详解】具体算式如下:
(8-2)4-(11-10)
=6+1
=6(只)
10x6+8=68(个)
答:一共有6只小猴子;一共有68个桃子。
【点睛】盈亏问题的三种形式,"盈亏型"、"盈盈型"、"亏亏型",注意三者的联系与区别,合理套用公式进
行求解。也可根据总数不变,列方程解答。
7.120元
【详解】(法1)"李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋",这三袋洗衣粉多花8、3=24(元),
又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以
要买碧浪洗衣粉袋数24+2=12(件).这样李妈妈带的钱数是10x12=120(元).
(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3x8=24(元),根据普通的盈亏
问题解法,买碧浪洗衣粉的数量是:24+(10-8)=24+2=12(件),所以李妈妈带的钱数是:12x10=120
(元).
8.绳子的长度是36米,树干的周长是U米。
【分析】把绳子三折,围一圈多1米,即绳子的长度是树干周长的3倍多3米;把绳子四折,围一圈少2
米,即绳子的长度是树干周长的4倍少8米;对比两次测量方法可知,树干周长增加1倍,绳子的长度就
增加3+8=11米,根据"绳子增加的长度+树干周长增加的倍数"既算得树干的周长,在用树干的周长x绳子
的折数+多(或一少)的米数即可算得绳子的长度。
【详解】3x1=3(米)
4x2=8(米)
(3+8)4-(4—3)
=11+1
=11(米)
11x3+3x1
=33+3
=36(米)
答:绳子的长度是36米,树干的周长是11米。
【点睛】注意本题中的绳子几折后多(或少)的米数是指每一段绳子多(或)少的米数,而不是整根绳子
多(或少)的米数。
9.12千米/时
【详解】这道题没有出发时间,没有学校到韩丁家的距离,也就是说既没有时间又没有路程,似乎无法求
速度.这就需要通过已知条件,求出时间和路程.假设有A,B两人同时从学校出发到韩丁家,A每小时行10
千米,下午1点到;B每小时行15千米,上午11点到.B到韩丁家时,A距韩丁家还有10x2=20(千米),
这20千米是B从学校到韩丁家这段时间B比A多行的路程.因为B比A每小时多行15-10=5(千米),所以B
从学校到韩丁家所用的时间是20+(15-10)=4(时).由此知,A,B是上午7点出发的,学校离韩丁家的距
离是15x4=60(千米).刘老师要想中午12点到,即想(12-7=)5时行60千米,刘老师骑车的速度应为60+
(12-7)=12(千米/时).
10.三好学生有4人,铅笔有21只。
【分析】由"每人9支缺15支"可知,再加15支就能正好分完;由"每人7支就缺7支"可知,再加上7支也
正好分完,两次数量差为15—7=8支,每次分物差为9—7=2支。也就是说每人多分2支,就多出8支.那
么,人数为8+2=4(人),铅笔的支数4x9—15=21只。
【详解】(15—7)+(9-7)
=8+2
=4(人)
4x9-15
=36T5
=21(只)
答:三好学生有4人,铅笔有21只。
【点睛】此题属于盈亏问题,考查了关系式(大亏数一小亏数)一两次分物数量的差=分物份数(学生人数)。
本题也可以使用方程法解。
11.100个;4辆
【分析】可以将第二种情况看成少25人,这样两次都是"亏",第二次每辆车多坐4人,还需要20个学生,
先求出车的数量,再求出学生数量。
【详解】25-5+25-21
=20+4
=5(辆)
5-1=4(辆)
21x5-5=100(个)
答:有100个学生参加春游;租4辆车每车坐25人刚好坐满。
【点睛】本道题属于盈亏问题中的"亏亏型",车辆数=(大亏-小亏)一两次分配的数量差。
12.70个
【分析】(盈数+亏数)一两次分物数量的差=分物份数(人数);本题中盈数为(3x5+10)个,亏数为2
个,两次分物数量的差为(8—3)个,代入数据计算,即可求出小班人数;然后根据小班每人分8个缺2
个,即可求出苹果的个数。
【详解】小班人数:(3x5+10+2)4-(8—5)
=27+3
=9(人)
苹果:8x9-2=70(个)
答:这筐苹果共有70个。
【点睛】本题是一道一盈一亏问题类型的题目,解答本题的关键是掌握盈亏问题的解题方法。
13.这个班有30个学生;220本练习本.
【详解】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案
分配结果相差:70-10=60(本),这是因为两次分配中每人所发的本数相差:7-5=2(本),相差60本
的学生有:60+2=30(人).练习本有:30x5+70=220(本)(或30x7+10=220).
14.王老师一共有课外书32本,该班有7位同学
【分析】本题是一盈一亏问题.按两种不同分配方案发书,结果书的本数相差为(11+3)本.产生差异的
原因是每人多分了(5-3)本书,由此可算出人数.
【详解】解:该班同学的人数:(11+3)+(5—3)=7(人)
团解法一:书的本数3x7+11=32或5x7-3=32
团解法二:设该班有x位同学,这样王老师一共有(3X+11)本书,或者(5X-3)本书.根据王老师所拥有的
课外书数目是一不变量,可列方程
3x+ll=5x-3
解得x=7
3x+ll=32或5x-3=32
答:王老师一共有课外书32本,该班有7位同学.
15.24只;152个
【分析】设出猴子的总数,表示出桃子的数量,根据两次分配桃子的数量不变,列方程求解。
【详解】解:设猴山上有x只猴;
5x+32=4xl0+8(x-10)
5x+32=40+8x-80
3x=72
x=24
5x+32=5x24+32=152
答:猴山上有24只猴;共买来152个桃。
【点睛】本题是盈亏问题中较为复杂的类型,第二次分配,大猴和小猴所分到的数量不一样,用算术方法
求解不是很方便,可以考虑列方程求解。
16.26个9人
【详解】由"其中两人分4个,其余每人分2个,则多出4个"转化为全家每人都分2个,这分4个的两人每
人都拿出2个,共拿出4个,结果就多了4+4=8个;由"一人分6个,其余每人分4个,则缺少12个"转
化为全家每人都分4个,分6个的人拿出2个,结果就少了12-2=10个,转变成了盈亏问题的一般类型,
则:
全家的人数:[4+2x2+02-2)]+(4—2)=18+2=9(人)
橘子的个数:2x9+8=26(4^)
17.1500米
【详解】迟到3分钟转化成米数:50x3=150(米),提前2分钟到校转化成米数:60x2=120(米),距离
上课时间为:(15。+120)+(6。-5。)=27(分钟),家到学校的路程为:50x(27+3)=1500(米).
18.120张
【详解】由题意,如果乙用完所有的信封,那么缺30张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,
两次分配的差为(3—2)张信纸,所以有信封(20+30)+(3—2)=50(个),有信纸2x50+20=120(张).
19.10间
【分析】将人分给宿舍,两次分配时宿舍数量不变,人数不变,第二次分配多用了20人,每个宿舍多住了
2人,先求出宿舍数量,再求出人数。
【详解】20+5-3
=20+2
=10(间)
答:房间有10间。
【点睛】本题是典型的盈亏问题,第二次分配不多也不少,可以看成“盈"0个或者"亏"0个来处理。
20.8只88条
【分析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是
11-10=1(条),由盈亏问题公式得,有小猫:8+1=8(只),猫妈妈有8x10+8=88(条)鱼.
【详解】11-10=1(条)
由盈亏问题公式得,有小猫:8+1=8(只)
猫妈妈一共有鱼:8x10+8=88(条)
答:一共有8只小猫,猫妈妈一共有88条鱼.
21.84个
【详解】如果小班的小朋友有两个人不在,也就是说有8个梨发不出去,这时就应该剩下8+4=12(个)梨.由
此可见,把这些梨给大班的小朋友每人分4个,就会多出来12个,又知道每个人分5个时,就会少6个,
那么大班的人数就是(12+6)+(5-4)=18个.这时候就可以算出梨的个数了.
解:如果小班的小朋友有两个人不在,也就是说有8个梨发不出去,这时就应该剩下4+4+4=12(个)梨.
大班的人数:
(12+6)4-(5-4)
=184-1
=18(人)
梨的个数:
5x18-6
=90-6
=84(个)
答:幼儿园一共买了84个梨.
考点:盈亏问题.
点评:先进行假设,然后根据假设后的情况计算.
22.43块
【详解】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两
次搬砖,每人相差5-4=1(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9
(块),每人相差1块,结果总数就相差9块,所以有少先队员9+1=9(人).共有砖:4x9+7=43(块).
23.5只28个
【详解】2x(5-3)+9=13(个)
4x(6-3)-10=2(个)
(13+2)+(6-3)
=15+3
=5(只)
4x3+(5-1)x6+10=28(个)
答:猴子有5只,桃子有28个。
24.46个
【详解】新来了一位小朋友,就要增加一盒软糖,说明在此之前,软糖应该是刚好分完几整盒,所以原来
的小朋友人数是11的倍数.增加了第二位小朋友之后,巧克力糖也要再来一盒了,说明原有的小朋友分几
整盒巧克力糖之后还剩下一块,也就是说,原有的小朋友人数是9的倍数减1.符合这两个条件的最小的数
是44,而且它刚好满足原有的巧克力比软糖多一盒的条件,所以原有44个小朋友,最后有46个小朋友.
25.划船的有40人,租用了7只船。
【分析】如每船4人,则少3只船,即如每船4人,人数多4x3=12人;如每船6人,就空了2个位子,
即如每船6人,人数少2人;对比两次的分配方法,盈12,亏2,两次分配的人数差为6—4=2人,则船
数为(12+2)+(6-4)=7只,人数为6x7—2=40人。
【详解】4x3=12(人)
(12+2)4-(6—4)
=14+2
=7(只)
6x7-2
=42-2
=40(人)
答:划船的有40人,租用了7只船。
【点睛】将本题中少的船只数转化成多的人数,计算出盈与亏是解决本题的关键。本题也可以使用方程法
求解。
26.桥高5米,绳子长18米。
【分析】绳子对折垂到水面,还余4米,即绳子是桥高的2倍多8米;把绳子3折垂到水面,还余1米,
即绳子是桥高的3倍多3米;对比两次的测量方法,盈8,盈3,两次测量的桥高倍数差3—2=1倍,则桥
高(8—3)+(3—2)=5(米),绳长5x2+8=18米。
【详解】4x2=8(米)
3x1=3(米)
(8—3)+(3-2)
=5+1
=5(米)
5x2+2x4
=10+8
=18(米)
答:桥高5米,绳子长18米。
【点睛】对比两次的测量方法算出盈与亏是解决本题的关键。要注意绳子对折或三折后井外余的米数是指
绳子每一段余的米数。
27.73
【分析】先求出这个数的8倍和这个数的5倍相差多少,然后先求出3倍是多少,再求出这个数是多少。
【详解】153+66+8-5
=219+3
=73
答:这个数是73。
【点睛】本题实质上是盈亏问题,可以按照盈亏问题的思路求解,也可以列方程求解。
28.有7个少先队员参加摆花盆活动;一共摆38个花盆
【详解】我们可以把第二个条件转化为如果每人摆6盆花,还缺4盆,那么就是简单的“一盈一亏
人数:[3+(6-4)x2]+(6—5)=7(人),盆数:5x7+3=38(盆)或6x7—4=38(盆).
【点睛】需要转化条件的盈亏问题,转化思想似乎有点玄,为什么我一定会想到:"把第二个条件转化为如
果每人摆6盆花,还缺4盆"?答案在于,我们应该在大方向上有感觉,这道题"每人摆5盆,还有3盆没人
摆;每人摆6盆,还……","还"字后面的下文怎么接?接上了,转化成功!
29.1500米
【详解】根据题意,每分钟走50米,迟到3分钟,实际上就是还差50x3=150(米)到校;如果每分钟60
米,提前2分钟到校,即到校后还可以多走60x2=120(米),第一次与第二次相差150+120=270(米),也
就是第二次比第一次多走了270米,所以皮皮从家到学校所用时间是270+(60-50)=27(分钟),皮皮家到
学校的距离是50x(27+3)=50x30=1500(米).
【点睛】需要转化条件的盈亏问题.两种方案,除了速度差,更要感受到路程差,从而看到,这里的数量
关系,竟然就是追及关系.
30.有8只小猫;猫妈妈一共有88条鱼.
【详解】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是
11-10=1(条),由盈亏问题公式得,有小猫:8+1=8(只),猫妈妈有8x10+8=88(条)鱼.
31.学生8人,苹果88个
【详解】为什么第一次多8个,第二次不多也不少了呢?因为第二次每人多分了1个,所以有8+1=8(人),
苹果8x10+8=88(个).
专家点评:
【点睛】盈亏问题,请注意体会差量分析的应用.
32.12块
【详解】两次的分配结果相差:24-12=12(块),这是因为第一次与第二次分配中每人相差:9-6=3(块),
多少人相差12块呢?12+3=4(人),糖果数是:6x4-12=12(块)或9x4-24=12(块).
33.48人
【分析】分成若干组,每组8人,则若每组8人,人数刚好分完;把每组改为12人,因此减少2组,即若
每组12人,则人数少2x12=24人;对比两次分配方法,盈0,亏24,两次分配的人数差为12—8=4人,
则组数为24+4=6组,总人数为6x8=48人。
【详解】2x12=24(人)
24+(12-8)
=24+4
=6(组)
6x8=48(人)
答:参加劳动的学生有48人。
【点睛】把本题中的减少的组数转化成人数缺少的数量,算出盈与亏是解决本题的关键。
34.10个人;2个房间
【分析】盈亏问题,第一次少6个人,第二次少2个人,当做"亏亏型"盈亏问题求解。
【详解】具体算式如下:
(6-2)+(8-6)
=4+2
=2(个)
8x2-6=10(个)
答:一共有2个房间;10个人。
【点睛】盈亏问题的三种形式,“盈亏型"、"盈盈型"、"亏亏型",注意三者的联系与区别,合理套用公式进
行求解。
35.佳佳家有9人,这筐梨有26个。
【分析】佳佳和妹妹每人分4个梨,其余每人分2个梨,还多出4个梨,则若每人都分2个,还多4+(4
-2)x2=8个;如果佳佳1人分6个梨,其余每人分4个梨,又差12个梨,则若每人分4个,差12—(6
-4)=10个;即盈8,亏10,两次分配的差为4—2=2,则人有(8+10)十(4—2)=9人,梨有(9-2)
x2+2x4+4=26(个)。
【详解】4+(4-2)x2=8(个)
12-(6-4)=10(个)
(10+8)4-(4—2)
=18+2
=9(人)
2x4+(9-2)x2+4
=8+14+4
=22+4
=26(个)
答:佳佳家有9人,这筐梨有26个。
【点睛】由于两次分配的数量不统一,因此据已知条件将每次分配的数量统一后,算出盈与亏是完成本题
的关键。
36.10人;梨树:32棵;苹果树:64棵
【分析】由于苹果树苗是梨树苗的2倍,根据题意,梨树苗每人栽3棵,还余下2棵,那么如果每人栽6
棵苹果树苗,应余下4棵,而已知每人栽7棵苹果树苗,则少6棵。根据盈亏问题解法,植树人员共(4+
6)-(7-6)=10(人),梨树有3x10+2=32(棵),苹果树有32x2=64(棵)。
【详解】根据题意,如果每人栽3x2=6(棵)苹果树苗,则应余下2x2=4(棵)
果树专业队上山植树的人数:(4+6)+(7—6)
=104-1
=10(人)
梨树:3x10+2=32(棵)
苹果树:32x2=64(棵)
答:果树专业队上山植树的有10人,要栽的梨树和苹果树分别是32棵和64棵。
【点睛】本题考查盈亏问题中一盈一亏的解法:盈与亏的和一两次分得的差=参与分配对象总数。根据梨树
与苹果树之间的数量关系,将梨树的盈余问题转化为苹果树的盈余是解题的关键。
37.280米
【分析】如果每天修240米,修完全路就得延期5天,即若按照原定时间计算,每天修240米,则就会少
修240x5=1200米;如果每天修300米,修完全路就提前两天,即若按照原定时间计算,每天修300米,
就会多修300x2=600米;两次修路的长度差为1200+600=1800米,每天修路的长度差为300—240=60
米,则原定时间为1800+60=30天,总长度为(30+5)x240=8400米,原计划每天修8400+30=280米。
【详解】240x5=1200(米)
300x2=600(米)
(1200+600)+(300-240)
=18004-60
=30(天)
(30+5)x240
=35x240
=8400(米)
8400+30=280(米/天)
答:每天修280米正好在规定时间完工。
【点睛】将本题中的延期或提前的天数转化成少修或多修的米数,计算出盈与亏是解决本题的关键。
38.10个人;32个梨;64个苹果
【分析】设人数为未知数,根据梨子和苹果的分配情况表示出各自的总数,根据数量关系列方程求解。
【详解】解:设总共有x个人;
2(3x+2)=7x-6
6x+4=7x—6
x=10
3x+2=3xl0+2=32
7x—6=7x10—6=64
答:有10个人;有32个梨;有64个苹果。
【点睛】本题相当于是两次分配数量不一致的盈亏问题,对于此类问题,列方程求解比较简单。
39.6个19棵
【详解】(17-5)+(6-4)
=124-2
=6(个)
4x6-5=19(棵)
答:有6个同学,有19棵树.
40.15人
【分析】如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够,说明第一组人数少于48+4=12
(人),多于48+5=93,即9人;如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够,
说明第二组人数少于48+3=16(人),多于48+4=12(人);综上所述,第一组可能有10或11人,第二
组可能有13、14、15人,因为已知第二组比第一组多5人,所以,第一组只能是10人,第二组15人。
【详解】48+4=12(人),则第一组少于12人,
48+5=9(人)......3(本),则第一组多于9人,
48+3=16(人),则第二组少于16人,
48+4=12(人),则第二组多于12人,
整理以上数据可得,第一组可能有10或11人,第二组可能有13、14.15人,根据第二组比第一组多5人,
因此第一组只能是10人,第二组15人。
【点睛】关键是根据图书的总数以及具体分配情况,利用除法算式推理出每组人数的大致范围。并由两组
人数之间的关系,最终确定每组人数是多少。
41.井深2米,绳子长12米。
【分析】绳子对折来量,井外余4米,即绳子的长度是井的2倍多8米;将绳子三折来量,井外余2米,
即绳子的长度是井的3倍多6米;对比两次的测量方法,盈8米,盈6米,两次测量的倍数差为3—2=1
(倍),则井的深度为(8—6)4-(3—2)=2米,绳子长度为2x2+8=12米。
【详解】2x4=8(米)
3x2=6(米)
(8—6)4-(3—2)
=2+1
=2(米)
2x2+8
=4+8
=12(米)
答:井深2米,绳子长12米。
【点睛】对比两次的测量方法算出盈与亏是解决本题的关键。要注意绳子对折或三折后井外余的米数是指
绳子每一段余的米数。
42.27人
【详解】"多9人"与"多3人"两者相差9—3=6(人),每条长椅要多座4-3=1(人),因此就知道,共有
6+1=6(条)长椅,人数是6x3+9=27(人).
43.6间40人
【详解】每个房间住3人,则多出22人,每个房间多住5人,意味着就是每个房间住8个人,则空出1个房
间,这1个房间如果住满人应该是lx8=8(人),由此可见,每一个房间增加8-3=5(人).两次安排人数总
共相差22+8=30(人),因此,房间总数是:30+5=6(间),学生总数是:3x6+22=40(人).
44.周长7米;绳长24米
【分析】绳子的总长和树的周长不变,第二次比第一次多用7米,多绕一圈,先求出树的周长,再求出绳
子的长度。
【详解】3+4+4—3
=7+1
=7(米)
3x7+3
=21+3
=24(米)
答:树的周长是7米;绳子有24米。
【点睛】盈亏问题中的"盈亏型",不变量是绳长和周长,相当于是将绳长分配给周长。
45.一共有15辆汽车;980个学生。
【分析】每车多坐5人,实际是每车可坐5+65=70(人),恰好多余了一辆车,也就是还差一辆汽车的人,
即70人。因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,
求有多少人和多少辆车?
【详解】车数是(5+5+65)+5
=75+5
=15(辆),
人数是65x15+5=98065x15+5
=975+5
=980(人)或:
(5+65)x(15-1)
=70x14
=980(人)。
答:一共有15辆汽车;980个学生。
46.寄宿的学生有406人,宿舍有62间。
【分析】若每间宿舍住6人,多出34人,即每间宿舍住6人,人数多出34人;若每间宿舍住7人,则多
出4间宿舍,即若每间宿舍住7人,则人数少7x4=28人;对比两种分配方法,盈34,亏28人,两次分配
的人数数量差为7-6=1人,则宿舍数为(34+28)4-(7-6)=62间,人数为62x6+34=406人。
【详解】7x4=28(人)
(34+28)+(7-6)
=62+1
=62(间)
62x6+34
=372+34
=406(人)
答:寄宿的学生有406人,宿舍有62间。
【点睛】将本题中多出的宿舍数转化成缺少的人数,计算出盈与亏是解决本题的关键。本题也可以使用方
程法。
47.15000米
【详解】迟到3分钟转化成米数:500x3=1500(米),提前两分钟到校转化成米数:600x2=1200(米)王
老师家到学校需要(1500+1200)-(600-500)=27(分钟),王老师家到学校的路程:500x(27+3)=15000
(米).
48.65名
【分析】将人分给长椅,根据前两次的分配情况,先求出长椅数和人数,再求最后的问题。
【详解】50+10-12-8
=60+4
=15(张)
15*8+50=170(名)
170-15x7=65(名)
答:还剩下65名学生无座位。
【点睛】本题的关键是利用盈亏问题求出总人数和长椅的数量,最后的问题是比较简单的。
49.80粒
【详解】3位小朋友本来每人可以分到10粒,他们共有的10x3=30(粒),分给其余小朋友,每人就可以
增加16-10=6(粒),因此其余小朋友有10x3+(16-10)=5(人).
再加上这3位小朋友,共有小朋友5+3=8(人).
这袋糖有10x(5+3)=80(粒)
50.9间;59人
【分析】由已知条件
每间5人少14个床位
每间7人多4个床位
比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市危险废物处理执法办法
- 重庆三峡学院《乒乓球》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《员工培训与开发》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《基础教育课程改革》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《供应链建模与仿真》2023-2024学年第一学期期末试卷
- 重庆财经学院《应用开发》2022-2023学年期末试卷
- 重庆三峡学院《教育法律法规与师德修养》2021-2022学年第一学期期末试卷
- 安全质量标准化档案资料管理制度
- 2024北京东直门中学九年级(上)期中物理
- u3d程序员岗位职责
- 人教版数学四年级上册-第五单元-平行四边形和梯形-单元测试卷(含答案)
- 2024世界糖尿病日糖尿病与幸福感糖尿病健康教育课件
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
- 2024年医疗机构医疗废物管理规范考试试题及答案
- 模板工程风险辨识及防范措施
- EPC项目投标人承包人工程经济的合理性分析、评价
- 大学生生涯展示
- 房屋市政工程生产安全重大事故隐患判定标准(隐患排查表)
- 世界问候日-你的问候温暖世界主题PPT
- 籍贯对照表完整版
- 中国摄影家协会会员登记表
评论
0/150
提交评论