




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EUROPEANCENTRALBANK
EUROSYSTEM
WorkingPaperSeries
AnnalisaFerrando,SarahHolton,ConorParleThetransmissionofbankcredit
conditionstofirms-evidencefrom
linkedsurveys
No2975
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29751
Abstract
UsinganoveldatasetlinkingfirmleveldatafromtheSurveyonAccesstoFinance
ofEnterprises(SAFE)andbankleveldatafromtheBankLendingSurvey(BLS),weexplorehowchangesincreditstandardspassthroughtofirmsatagranularlevel.Wefindthattightercreditstandardsdecreaseloanavailabilityreportedbyfirms,increasethelikelihoodtheyreportaccesstofinanceastheworstproblemanddecreasetheirinvestment.Aftercontrollingforcountry-sector-timefixedeffectsthatcapturecyclicalmacroeconomicconditions,effectsonlyremainforfirmsthatneedfinance.Moreover,wefindthatamorediversifiedfundingbaseinsulatesfirmsfromthenegativeimpactsoftightercreditstandardsonavailabilityofbankloansandaccesstofinance,althoughthereislittleevidenceofsuchaneffectforinvestment.Effectsareasymmetric,withstrongerimpactsrecordedforatighteningthananeasing.Ourresultsunderscoretheimportanceofdemandconditionswheninterpretingthecreditconditionsandwethusproposeanewindicatorofdemandadjustedcreditstandardsataeuroarealevel,whichcanbeusedtoanalysebroadercreditdynamics.
JELclassification:D22,E22,E52
Keywords:Finance,creditconditions,surveys,firm-bankrelationships.
ECBWorkingPaperSeriesNo29752
Non-technicalsummary
Changesincreditconditionscanaffectfirms’accesstofinanceandtheirbusinessdecisionsandarethereforecloselymonitoredbypolicymakers.Thetransmissionofagivenchangeincreditconditionscandependonthesituationandbehaviourofbothbanksandfirms.Inthispaperweaimtoassessthistransmissionviabothfirmsandbanksbyfocusingontheperceptionsthattheybothhaveonchangesinfinancingconditions.Weuseauniquedatasetlinkingtwosurveys:theECB’sSurveyonAccesstoFinanceofEnterprises(SAFE)thatprovidesinformationfromthefirms’side,andtheBankLendingSurvey(BLS)whichscrutiniseseuroareabanks.Inournovelapproach,weanalysethedirectimpactofchangesincreditsupplyofaspecificbank(intheBLS)ontheavailabilityofloansasperceivedbyfirms(intheSAFE)thatarecustomersofthatbank.
WefocusontheconceptofcreditstandardsasdefinedintheBLS.Thesurveycollectsinformationonchangesincreditstandards,whicharetheinternalguidelinesorloanapprovalcriteriadefinedbyeachbankthatloanofficersshouldapplywhenborrowersapproachthemforabankloan.Fromthesideofthefirms,welook,instead,atthelikelihoodoffirmsinreportingdifficultiestoaccessfinanceandthepass-throughtotheirinvestmentdecisionsofchangesinthecreditstandardsappliedbytheirbank(s).
Inourempiricalanalysiswerelyonasampleof22,799firmsmatchedtobanksin11countriesfortheperiod2010-2022.Wefindthattighter(looser)creditstandardslead(i)toadecrease(increase)infirms’reportedloanavailability,(ii)toanincreased(decreased)likelihoodofafirmreportingaccesstofinanceastheirworstproblemand(iii)tolower(higher)firminvestment.Theseeffectsaresignificantmainlyforthosefirmsthatsignalledanincreasedneedforbankloansduringtheperiodweanalyse.Inaddition,byexploringthetimedevelopments,wefindthatourresultsaremainlydrivenbyperiodsoftightening,withverylittleeffectspresentforperiodsofeasing.
Wealsoprovideevidenceoftheimportanceforfirmsofhavingaccesstoadiversifiedfundingbase.Indeed,amongfirmsneedingabankloan,thosehavingamorediversifiedfundingbasecanmoreeasilycounteracttheeffectofatighteningofbankloansconditions.Ourresultsunderscoretheimportanceofdemandconditionswheninterpretingthecreditconditionsandweproposeanewindicatorofdemandadjustedcreditstandardsataeuroarealevel,whichcanbeusedtoanalysebroadercreditdynamics.
ECBWorkingPaperSeriesNo29753
1Introduction
Creditconditionsareakeychannelthroughwhichmonetarypolicyaffectstheeconomy(BernankeandGertler,1995).Achangeinmonetarypolicycaninduceasimultaneouschangeinbothcreditsupplyanddemandandthismakesitchallengingtopreciselyestimatetheeffectofachangeincreditsupplyonbanklending.Forthisreason,varioustechniquesandmoregranulardatahavebeenusedtomorecleanlyidentifycreditsupplyeffectsandhaveestablishedthatchangesincreditsupplysignificantlyaffectfirms’accesstofinanceandconsequentlytheirinvestmentbehaviour(AmitiandWeinstein(2018)).Moreover,thetransmissionofachangeincreditstandards-forinstance,followingachangeinmonetarypolicy-willcruciallydependalsoontheconditionofbothbanksandborrowers(Jiménezetal.(2012)andAltavillaetal.(2021)).Forinstance,heterogeneityinborroweroutcomesfollowinganaggregatechangeincreditconditionscouldpotentiallystemfromhowbanksbehaveandtransmittheshockorhowfirmcharacteristicsaccentuateormitigatetheshock.Therefore,granularinformationoncreditsupplybyindividualbanksandtheimpactonindividualfirmsiscrucialincapturinghowaggregatecreditstandardsultimatelyaffectfirms’accesstofinanceandinvestment.
Inthispaper,weuseanovelandgranulardatasetonbanksandbusinessestoexploretheeffectsofchangesincreditstandardsonfirms.Theuniquedatasetlinksindividualfirms’responsesfromtheECB’sSurveyonAccesstoFinanceofEnterprises(SAFE)andindividualbanks’responsestotheBankLendingSurvey(iBLS).Itallowsforaquantificationoftheimpactofchangesinbanks’creditstandards,asmeasuredbybankresponsestotheBLS,onfirms’reportedavailabilityofloans,onaccesstofinancebeingtheirworstproblemandonthepass-throughtotheirinvestmentdecisions,asmeasuredintheSAFE.Bylinkingthetwosurveysatagranularlevel,wecanexplorenotjustthedirectimpactofchangesincontemporaneouscreditstandards,butalsotheaccumulationofchangesovermultipleperiods.Thiscombinesthestrengthsofthetwosurveyswell.WhiletheSAFEisusefulforexploringcontemporaneouschanges,itismoredifficulttoassessthecumulativeimpactofcreditconstraintsasfirmsmayappearonmultipleoccasionsbuttheydonotnecessarilytakepartinconsecutivesurveys.However,usingBLScreditsupplyvariablesallowsforthecalculationofabankspecificloansupplyeffectthatwecanfollowovertime.Second,theSAFEcontainsusefuldataonfirmspecificconditions(likedemand)andoutcomes(likeinvestment)thatcanbeexploredatamicrolevel.Similarly,whileindividualbank-levelresponsesfromtheBLSareinformativefor
ECBWorkingPaperSeriesNo29754
thedemandaspecificbankfaces,informationfromtheSAFEsurveyallowsforassessinghow
heterogeneityindemandcaninteractwithcreditsupplyconditions.Overall,combiningtheserichmicrolevelsurveydatacanallowforanin-depthexplorationofthechannelsofcreditconditionsandhowbanksandfirmscanleadtovariationinhowashocktocreditconditionspropagates.
First,wefindthat,asexpected,tighter(looser)creditstandardslead(a)toadecrease(increase)infirmlevelreportedloanavailability,(b)toanincreased(decreased)likelihoodofreportingaccesstofinanceastheworstproblemfacingtheirfirmand(c)tolower(higher)investment.Yetwhencountry-sector-timefixedeffectsareincludedinadditiontofirmlevelfixedeffects,theeffectsofcreditstandardsonfirms’accesstofinanceandinvestmentbecomeinsignificant,implyingthatbanks’creditsupplydecisionsandfirms’investmentdecisionsaredominatedbysectoralandcyclicalconsiderations.However,whenafirmhasanincreaseddemandforcredit,itissignificantlymorelikelytoreportcreditconstraintsandlowerinvestmentwhenfacedwithtightercreditstandards,evenwhencomparedtootherfirmsinthesamesector,countryandtimeperiod.Thissuggeststhat,inadditiontosectoralandcyclicalfactors,itiscrucialtoconsiderindividualfirms’creditdemandconditionswhenassessingtheimpactofachangeincreditsupplyonfirmoutcomes.
Second,usinginformationonfirms’financingstructurefromtheSAFE,wefindevidencethatadiversifiedfundingbasemitigatestheimpactofacredittightening.Havingamorevariedfundingbasecancounteracttheeffectofatighteningforthosefirmswhohaveincreasedneedforbankloans,indicatingthatdifferentiatedsourcesoffundscanhelpsmoothcreditconstraintscomingfromatighterbankcreditconditions.
Third,wefindtheeffectsfromchangesincreditconditionsareasymmetric,asthestrongesteffectsonaccesstofinanceandinvestmentarereportedbyfirmsduringperiodsoftightening,whileperiodsofeasingsuggestmorelimitedeffects.
Inaddition,wefindthattighter(looser)creditstandardsmainlypassthroughtoinvestmentthroughalower(higher)probabilityofincreasinginvestment,ratherthanahigher(lower)probabilityofdecreasinginvestment.Wequantifythattheimpactofaoneunitincreaseinthetightnessofcreditstandardsdecreasestheprobabilityofincreasinginvestmentby0.08pointsafteroneperiod,upto0.13pointsafter3periodsoftightening,illustratingthecombinationofbothalaggingandcumulativeeffect.Forloanavailability,theeffectsofatightening(easing)ofcreditstandardsarestrongerforincreasing(decreasing)theprobabilityofreportingdeclining
ECBWorkingPaperSeriesNo29755
loanavailability(0.03pointsafteroneperiod,risingto0.10afterthreeperiods),butitalsohassomesignificantnegative(positive)impactontheprobabilityofafirmreportingincreasing(decreasing)loanavailability.Bothoftheseeffectsarestrongrelativetotheoverallproportionoffirmsthatreportincreasesordecreaseseachperiod.
Finally,leaningonthefirm-bankmicrolevelinformation,weproposeanewmeasureofdemandadjustedcreditstandardsthatcanprovideadeeperunderstandingofthedynamicsofcreditconditionsintheeuroarea.Ourresultsshowthat,whendemandishigher,theeffectsofchangesincreditstandardsarestronger.Therefore,adjustingcreditsupplymeasuresbyconsideringalsodemandconditionscanbemoreinformativethanlookingpurelyatcreditstandardsalone.Whencomparingourdemandadjustedcreditstandardstoanunadjustedseries,wefindthatduringthesovereigndebtcrisisunadjustedcreditstandardswouldhaveshownarelativelymorebenignpicturecomparedtotheadjustedseries.Moreover,duringthetighteningperiodin2022,theadjustedseriessignalsthatcreditconditionswerelesstightoncedemandisaccountedfor.Thisnewindicatorcanbeausefuladditionalmetrictoenhanceourunderstandingofthepass-throughofcreditstandardstotherealeconomy.
Tothebestofourknowledge,thisisthefirstpaperthatexplicitlylinkstherepliesofthetwosurveysatagranularlevel.Wedosobymatchingfirm-bankleveloutcomesatahalf-yearlybasis.Inthiswaywecancontrolforbothindividualbankloansupply(fromBLS)andfirmdemand(fromSAFE)toexploretheinteractionbetweenthetwofactorsandderiveameasureofdemandadjustedcreditstandards.
Thispapercontributestotheliteraturethatusessurvey-basedinformationtoexplorethefactorsthatimpactfirms’accesstofinance.ThisispossiblethankstothewidearrayoffirmspecificinformationavailablewithintheSAFE.OurresultsparticularlyspeaktothestudyofOngenaetal.(2012)thatshowedthatfirmswithalternativesourcesoffinancearelesslikelytoneedbankcredit.Wefindthatfirmswithamorediversifiedfundingbasearelessaffectedbyabankbasedtighteningofcreditstandardsincaseswheretheyneedcredit.Additionally,ourfindingsconfirmalsothatfirmandcountry-levelcharacteristicsarerelevantdeterminantsforaccesstofinanceasinBecketal.(2005).Thepaperalsoaddstotheliteraturethatassessestheinformationcontentofbanklendingsurveystoexaminebothcreditconditionsandtheirimpactontheeconomy(LownandMorgan(2006),deBondtetal.(2010),DelGiovaneetal.(2011)andAltavillaetal.(2019)).Thisliteraturetypicallyusesloanflowstoanalysebanks’surveyresponses.Inourcase,theuseoffirmsurveydataallowsustodirectlyassesstheimpactof
ECBWorkingPaperSeriesNo29756
changesincreditsupplyonfirms’financingsituations,asfirmsreportonchangesintheircreditdemand,intheirperceivedsupplyconditionsandeconomicoutcomes.Moreover,theSAFEsurveyallowsustobuildalargesampleofresponsesovertimeinacleanfashion,buildingonpreviousworktoassessqualitativelymeasuredoutcomesandresponsesoffirms.
Therestofthepaperproceedsasfollows.Section2introducesourdatasources,section3showsourempiricalresults,section4introducesdemandadjustedcreditstandardsandsection5concludes.
2Data
Ourempiricalmethodologyreliesonseveraldatasources,thekeytwobeingtheSurveyonAccesstoFinanceforEnterprises(SAFE)andBankLendingSurvey(BLS)datasets.Acrucialinnovationofthisstudyisthatthesetwosurveysarethenmatchedatfirm-banklevelusingtheinformationonthenamesofthemainbanksasreportedbySAFEfirmsintheBvDOrbisdatabase.Webrieflydescribetheattributesofeachdataset.
2.1SAFE
TheSAFEhasbeenconductedonbehalfoftheEuropeanCentralBankandtheEuropeanCommissionsince2009.SAFEgathersfirm-levelinformationaboutthefinancialsituationandthefinancingneedsandaccesstofinanceintheeuroarea.Thesurveyisconductedathalfyearlyintervalswithquestionsexaminingthepreviousandnextsixmonths.FirmsinthesamplearerandomlyselectedfromtheDun-Bradstreetdatabase.Thesampleisstratifiedbyfirm-sizeclass,economicactivity,andcountry.Thesamplesizeforeacheconomicactivityischosentoguaranteerepresentationacrossthefourlargestindustries:manufacturing,construction,trade,andservices.Also,thesamplesizesareselectedbasedonrepresentationatthecountrylevel.ThefirsttwosurveyswereconductedwiththeperiodsofinterestbeingJanuary-JuneandJuly-December,butsincethefirstsurveyin2010,thesurveyconcentratesontheperiodsApril-SeptemberandOctober-March.Mostfirmswithinthesurveyaresmallandmedium-sizedenterprises(SMEs)andarethusmostlyreliantonfinancingfrombanksrelativetolargeenterprises.Thus,thesurveyishighlyappropriateforanalysingtheimpactofchangesinbankcreditstandardsortermsandconditions.
ECBWorkingPaperSeriesNo29757
2.2BLS/iBLS
TheBLShasbeenconductedbytheECBsince2003andasksapanelofeuroareabanksaboutchangesintheirlendingconditions.Thesurveyisconductedquarterlywithkeyquestionsfocusingonchangesincreditstandards,termsandconditions,rejectionratesandthedemandforloanssetbyorfacedbyeachbank.Questionsareeitherbackwardlookingoverthepreviousthreemonthsorforwardlookingoverthenextthreemonths.
ThispaperusesaproprietarymicroleveldatasetofindividualbankresponsestotheBLSsurvey,callediBLS.TheiBLSallowsustoexploitbanklevelheterogeneitybeyondthecountrylevelheterogeneitythatcanbeseenintheaggregatedcountry-leveldataset.ThedatasetcomprisesindividuallevelresponsestotheBLSquestionnairefrom120banksacross15euroareacountries.1
2.3Thematchingprocess-SAFE-BvDOrbis
ThedatasetusedinthispaperinvolvesmatchingtheBLSandSAFEindividuallevelrepliesbyusinganECBproprietarydatasetthatlinksSAFEfirmstothefinancialstatementsasprovidedbyBureauVanDijk(BvD)Orbisdatabase.Inaddition,BvDOrbisprovidesalistofmainbanksassociatedtothefirmsinthedatabase.ThislistisdirectlycompiledbyBvDusingacombinationoffirmregistriesanddirectinterviewswithfirmrepresentatives.Itshouldbenotedthatfirmscouldreportmorethanonebank.Weexploitthisfulluniverseofbankswithinourmatchingprocess,inordertomatchallpossiblebankstoeachindividualSAFEfirm.Thiscontrastswithpriorapproachesthatmadeanassumptionthatbankswereorderedintermsoftheirimportancetoeachindividualfirm(seeforexampleCorbisieroandFaccia(2020),Ferrandoetal.(2019)andKalemli-Özcanetal.(2022)).
GiventhecharacteristicsofthebankvariableintheBvDOrbisdataset,weneedtoassumethatbank-firmrelationshipsareunchangedthroughoutoursample.Thisassumptionisnotsostrongasitmaylookprimafacie,asingeneraltheserelationshipstendtobestickyovertime.ThisisbackedbyevidenceseeninKalemli-Özcanetal.(2022)andGiannettiandOngena(2012),whofindthatbycomparingmultiplevintagesoftheOrbis-Amadeusbank-firmmatches,thatthereareverylimitedchangesovertime.Moreover,thisisevenlesslikelytobeanissuein
1BanksinCyprus,Greece,MaltaandSloveniaarenotincludedintheiBLSsample.Ourfinalmatchedsampleisfurtherlimitedbydataavailabilityonthenamesoffirms’banks,asisshowninTable4.
ECBWorkingPaperSeriesNo29758
ourcaseinthatwedonotrestrictourselvestoonlyfocusingonasinglebankforagivenfirm,andinsteaduseallforwhomtheyhavearelationship.
ThedataprovidedintheBvDOrbisdatasetcomeinuncleanedformat,withonlytherawtextnamesofbanks.Assuch,thematchingprocessbetweenSAFEandBLSisnecessarilyamulti-stepautomatedandmanualapproach.Asafirststep,firmsforwhomtheirbanks’namesmatchpreciselythelegalnameofaBLSbankareautomaticallymappedtothatbank.Regardingtheremaindingones,manualmatchingisundertaken,witheachuniqueentryassessedandmatchedtoaBLSbankifamatchexists.Suchanapproachispreferabletoafuzzymatchingapproach,asinmanycaseseithercolloquialnamesareusedforbanksorindividualbankshavesimilarnames.Thisbothmaximisesthesizeofourmatchedsetandminimisesourrisksoffalsepositives.
2.4Datasetcharacteristics
Ourinitialdatasetincludes29,768firms,ofwhich22,799arematchedtoatleastonebank.Ofthese,13,703(60.1%)arematchedtoonesinglebank,whiletherestarematchedtomorethanonebankfromtheBLSsample,varyingfromatotalof2matchesto19forthreecases.ThedistributionoftheseisshowninTable1.
Regardingthepanelstructureofthedataset,thetotalnumberoffirmsbrokendownbytheirnumberofoccurrencesisshowninTable2whilethetotalnumberofobservationsperwaveisshowninTable3.Ascanbeseenthemajorityoffirmsappearmorethanonceinthesurvey,allowingustousefirmfixedeffects.Regardingthetimedistribution,surveyroundspriortotheeleventhwave(September2014)arerelativelyunderrepresented,withthefirstthreeroundshavingparticularlylownumbers.ThisisjusttheresultofthegreatercoverageoffirmsintheanonymisedSAFE-BvDOrbisdatasetfromthispointonwards.
ECBWorkingPaperSeriesNo29759
Table1.Distributionoftotalnumberofbanksforeachfirm
NumberofBLSMatches
TotalMatches
Percentage
1
13703
60.10
2
3700
16.23
3
1736
7.61
4
1024
4.49
5
579
2.54
6
551
2.42
7
407
1.79
8
286
1.25
9
229
1.00
10-14
501
2.21
15-19
83
0.36
Total
22799
100
Table2.Distributiionofthenumberofroundseachfirmappearsinthesurvey
Appearancesindataset
Numberoffirms
Percentageofdataset
1
7854
34.45
2
4578
20.08
3
3019
13.24
4
1990
8.73
5
1809
7.93
6
970
4.25
7
1231
5.40
8
534
2.34
9
302
1.32
10-14
472
2.07
15-22
40
0.18
Total
22799
100
ECBWorkingPaperSeriesNo297510
Table3.Totalobservationsbywave
Wavenumber
Totalobservations
Wavenumber
Totalobservations
1
39
15
3621
2
145
16
3901
3
182
17
3637
4
602
18
3713
5
749
19
3579
6
987
20
3686
7
1411
21
3536
8
1706
22
3456
9
2226
23
3552
10
2023
24
3403
11
3603
25
3424
12
3922
26
3526
13
3628
27
2520
14
3658
Wehaveobservationsfrom11euroareacountries,limited,ononeside,bycoverageintheiBLSdataset,and,ontheotherside,bycoverageinthefirm-bankmatchingdataintheBvDOrbisdatabase.ThedistributionofthenumberoffirmsbycountryisshowninTable4,alongsidetheirrelativematchingrates.Ingeneral,thelargercountrieshaveahighernumberofobservations,withGermany,SpainandFrancemakingupthelargestproportionofoursample.Regardingmatching,weseethatinAustriaandGermanytherelativematchingrateislower,partlyreflectingthehighnumberofbankswithinthosecountries,whilecountrieswithamoreconcentratedbankingsystem(likeSpain)haveahighermatchingrate.
Table4.Distributionofsamplebycountry
ECBWorkingPaperSeriesNo297511
Matched
Country
TotalFirms
Un-
matched
uniquefirms
infinaldataset
Match-ing
Success
Rate
Total
observa-tionsinsample
Averageobserva-tionsperfirm
Austria
3382
1796
1586
46.90%
4793
3.02
Germany
7354
3365
3989
54.24%
12117
3.04
Estonia
325
1
324
99.69%
607
1.87
Spain
5276
127
5149
97.59%
17418
3.38
France
4272
813
3459
80.97%
10912
3.15
Ireland
2023
100
1923
95.06%
6206
3.23
Lithuania
647
104
543
83.93%
1154
2.13
Luxembourg
259
11
248
95.75%
511
2.06
Latvia
544
255
289
53.13%
557
1.93
Netherlands
3166
217
2949
93.15%
8967
3.04
Portugal
2520
180
2340
92.86%
7193
3.07
TOTAL:
29768
6969
22799
76.59%
70435
3.09
2.5KeyVariables
Forouranalysis,weusemeasuresofcreditsupplyfromtheBLSandassesstheirimpactonfirmlevelresultsfromtheSAFE.Thisexploitsakeyadvantageofourmatcheddataset.SincetheSAFE,byconstruction,isnotabalancedpanelwecannotdelveintothelongerruneffectsofchangesinloansupplyatthefirmlevel.Bycontrast,usingtheinformationfromtheBLSwecanconstructalongrunmeasureofcreditsupplyasabackwardlookingaverage.Fortheanalysiswegobackuptooneandahalfyears(threesurveyroundsinSAFE),alongsidemorecontemporaneousmetrics.
Ourmeasureofcreditsupplyisbasedonthebanks’responsesoncreditstandardsfromtheBLS.Banksareaskedeachquarteraboutchangesintheircreditstandardsappliedtoloanstofirmsoverthepreviousthreemonths.Bankscanrespondwithfivepossibleanswers,each
ECBWorkingPaperSeriesNo297512
reflectingthedirectionandthelevelofintensityofchanges.Thequestionisframedintermsofatighteningoraneasing,withbanksstatingwhether:(withthestandardnumericalvaluesassignedtoeachresponseinbracketsafterwards)"tightenedconsiderably”(1),“tightenedsomewhat”(2),“unchanged”(3),“easedsomewhat”(4)and“easedconsiderably”(5).
AstheBLSisquarterlyandtheSAFEisbiannual(firmsareaskedaboutthechangesovertheprevioussixmonths),weaveragebanks’responsesoverthetwoBLSroundsthatcorrespondtoeachSAFEround.Inaddition,asfirmsareoftenmatchedtomorethanonebank,weconstructafirmlevelmeasureofcreditstandardsbyaveragingtheresponsesofeachbankmatchedtothefirm.Thisgivesusacontinuousscalemeasuringthefulluniverseofcreditstandardsfacedbyeachfirminawave.Wetransformtheresponsestobeonascalebetween-2and+2,with+2beingthestrongesttighteningand-2thestrongesteasingeasing.2
Weareinterestedinboththeimpactofshort-runchangesincreditstandardsbutalsothelongerrunchanges,astakingindividualsurveyroundresponsesalonewillnotaccountfortheimpactofcontinuouschangesincreditstandardsacrossmultipleperiods.Lettingoneperiodcsf,tdenotetheindividualperiodcreditstandardsfacingfirmfattimet.Weconstructthefollowingmeasure:
WeconstructthismeasureforK=1,2,3.Thisprovides3measuresofcreditstandards-K=1issimplyequivalenttooneperiodcst,fandisthesingleperiodchangeincontemporaneouscreditstandards.ForK=2andK=3wemeasurethelongerruncreditstandardsfacingafirm,forperiodsofayearandayearandahalfrespectively.AoneunitincreaseforK=1isequivalenttoasingleunitofincreasedtightening,whileforK=2andK=3,aoneunitincreasecanbeinterpretedasamorelong-runcontinuoustightening.
FromtheSAFE,weareinterestedinassessingpotentialresponsesoffirmstochangesincreditstandards.Wedosobyextractingthreevariablesmeasuring(a)changesintheavailabilityofbankloans(b)wh
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版股权收益权转让协议范例
- 渣土运输车租赁合同范例二零二五年
- 二零二五学校施工安全协议书
- 二零二五版股权担保协议合同书范例
- 学生跟岗实习协议二零二五年
- 茶楼承包协议书范例二零二五年
- 二零二五公司试岗协议书试岗期协议模板
- 保险代理居间协议合同书范例
- 二零二五版果树承包合同书范文
- 加床管理制度
- 初级会计实务全书电子教案
- 2025年安徽安徽省合肥汽车客运有限公司招聘笔试参考题库含答案解析
- 安徽省 2025 年九年级中考历史模拟试卷二(含答案)
- 武汉市部分学校2024-2025学年下学期3月考七年级数学试题(含答案)
- 2024-2030全球动态细胞分析行业调研及趋势分析报告
- 2025年临床试验数据保密协议
- 湖南中烟工业有限责任公司招聘考试真题2024
- 【实用版】GF-2013-0201建设工程施工合同(示范文本)
- 【资料】某企业设有供电和供水两个辅助生产车间,为全厂提
- 某集团PDMPLM项目评分标准及评分表
- CAD常用命令快捷键
评论
0/150
提交评论