欧洲央行-银行信贷条件向企业的传递-来自关联调查的证据(英)_第1页
欧洲央行-银行信贷条件向企业的传递-来自关联调查的证据(英)_第2页
欧洲央行-银行信贷条件向企业的传递-来自关联调查的证据(英)_第3页
欧洲央行-银行信贷条件向企业的传递-来自关联调查的证据(英)_第4页
欧洲央行-银行信贷条件向企业的传递-来自关联调查的证据(英)_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EUROPEANCENTRALBANK

EUROSYSTEM

WorkingPaperSeries

AnnalisaFerrando,SarahHolton,ConorParleThetransmissionofbankcredit

conditionstofirms-evidencefrom

linkedsurveys

No2975

Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.

ECBWorkingPaperSeriesNo29751

Abstract

UsinganoveldatasetlinkingfirmleveldatafromtheSurveyonAccesstoFinance

ofEnterprises(SAFE)andbankleveldatafromtheBankLendingSurvey(BLS),weexplorehowchangesincreditstandardspassthroughtofirmsatagranularlevel.Wefindthattightercreditstandardsdecreaseloanavailabilityreportedbyfirms,increasethelikelihoodtheyreportaccesstofinanceastheworstproblemanddecreasetheirinvestment.Aftercontrollingforcountry-sector-timefixedeffectsthatcapturecyclicalmacroeconomicconditions,effectsonlyremainforfirmsthatneedfinance.Moreover,wefindthatamorediversifiedfundingbaseinsulatesfirmsfromthenegativeimpactsoftightercreditstandardsonavailabilityofbankloansandaccesstofinance,althoughthereislittleevidenceofsuchaneffectforinvestment.Effectsareasymmetric,withstrongerimpactsrecordedforatighteningthananeasing.Ourresultsunderscoretheimportanceofdemandconditionswheninterpretingthecreditconditionsandwethusproposeanewindicatorofdemandadjustedcreditstandardsataeuroarealevel,whichcanbeusedtoanalysebroadercreditdynamics.

JELclassification:D22,E22,E52

Keywords:Finance,creditconditions,surveys,firm-bankrelationships.

ECBWorkingPaperSeriesNo29752

Non-technicalsummary

Changesincreditconditionscanaffectfirms’accesstofinanceandtheirbusinessdecisionsandarethereforecloselymonitoredbypolicymakers.Thetransmissionofagivenchangeincreditconditionscandependonthesituationandbehaviourofbothbanksandfirms.Inthispaperweaimtoassessthistransmissionviabothfirmsandbanksbyfocusingontheperceptionsthattheybothhaveonchangesinfinancingconditions.Weuseauniquedatasetlinkingtwosurveys:theECB’sSurveyonAccesstoFinanceofEnterprises(SAFE)thatprovidesinformationfromthefirms’side,andtheBankLendingSurvey(BLS)whichscrutiniseseuroareabanks.Inournovelapproach,weanalysethedirectimpactofchangesincreditsupplyofaspecificbank(intheBLS)ontheavailabilityofloansasperceivedbyfirms(intheSAFE)thatarecustomersofthatbank.

WefocusontheconceptofcreditstandardsasdefinedintheBLS.Thesurveycollectsinformationonchangesincreditstandards,whicharetheinternalguidelinesorloanapprovalcriteriadefinedbyeachbankthatloanofficersshouldapplywhenborrowersapproachthemforabankloan.Fromthesideofthefirms,welook,instead,atthelikelihoodoffirmsinreportingdifficultiestoaccessfinanceandthepass-throughtotheirinvestmentdecisionsofchangesinthecreditstandardsappliedbytheirbank(s).

Inourempiricalanalysiswerelyonasampleof22,799firmsmatchedtobanksin11countriesfortheperiod2010-2022.Wefindthattighter(looser)creditstandardslead(i)toadecrease(increase)infirms’reportedloanavailability,(ii)toanincreased(decreased)likelihoodofafirmreportingaccesstofinanceastheirworstproblemand(iii)tolower(higher)firminvestment.Theseeffectsaresignificantmainlyforthosefirmsthatsignalledanincreasedneedforbankloansduringtheperiodweanalyse.Inaddition,byexploringthetimedevelopments,wefindthatourresultsaremainlydrivenbyperiodsoftightening,withverylittleeffectspresentforperiodsofeasing.

Wealsoprovideevidenceoftheimportanceforfirmsofhavingaccesstoadiversifiedfundingbase.Indeed,amongfirmsneedingabankloan,thosehavingamorediversifiedfundingbasecanmoreeasilycounteracttheeffectofatighteningofbankloansconditions.Ourresultsunderscoretheimportanceofdemandconditionswheninterpretingthecreditconditionsandweproposeanewindicatorofdemandadjustedcreditstandardsataeuroarealevel,whichcanbeusedtoanalysebroadercreditdynamics.

ECBWorkingPaperSeriesNo29753

1Introduction

Creditconditionsareakeychannelthroughwhichmonetarypolicyaffectstheeconomy(BernankeandGertler,1995).Achangeinmonetarypolicycaninduceasimultaneouschangeinbothcreditsupplyanddemandandthismakesitchallengingtopreciselyestimatetheeffectofachangeincreditsupplyonbanklending.Forthisreason,varioustechniquesandmoregranulardatahavebeenusedtomorecleanlyidentifycreditsupplyeffectsandhaveestablishedthatchangesincreditsupplysignificantlyaffectfirms’accesstofinanceandconsequentlytheirinvestmentbehaviour(AmitiandWeinstein(2018)).Moreover,thetransmissionofachangeincreditstandards-forinstance,followingachangeinmonetarypolicy-willcruciallydependalsoontheconditionofbothbanksandborrowers(Jiménezetal.(2012)andAltavillaetal.(2021)).Forinstance,heterogeneityinborroweroutcomesfollowinganaggregatechangeincreditconditionscouldpotentiallystemfromhowbanksbehaveandtransmittheshockorhowfirmcharacteristicsaccentuateormitigatetheshock.Therefore,granularinformationoncreditsupplybyindividualbanksandtheimpactonindividualfirmsiscrucialincapturinghowaggregatecreditstandardsultimatelyaffectfirms’accesstofinanceandinvestment.

Inthispaper,weuseanovelandgranulardatasetonbanksandbusinessestoexploretheeffectsofchangesincreditstandardsonfirms.Theuniquedatasetlinksindividualfirms’responsesfromtheECB’sSurveyonAccesstoFinanceofEnterprises(SAFE)andindividualbanks’responsestotheBankLendingSurvey(iBLS).Itallowsforaquantificationoftheimpactofchangesinbanks’creditstandards,asmeasuredbybankresponsestotheBLS,onfirms’reportedavailabilityofloans,onaccesstofinancebeingtheirworstproblemandonthepass-throughtotheirinvestmentdecisions,asmeasuredintheSAFE.Bylinkingthetwosurveysatagranularlevel,wecanexplorenotjustthedirectimpactofchangesincontemporaneouscreditstandards,butalsotheaccumulationofchangesovermultipleperiods.Thiscombinesthestrengthsofthetwosurveyswell.WhiletheSAFEisusefulforexploringcontemporaneouschanges,itismoredifficulttoassessthecumulativeimpactofcreditconstraintsasfirmsmayappearonmultipleoccasionsbuttheydonotnecessarilytakepartinconsecutivesurveys.However,usingBLScreditsupplyvariablesallowsforthecalculationofabankspecificloansupplyeffectthatwecanfollowovertime.Second,theSAFEcontainsusefuldataonfirmspecificconditions(likedemand)andoutcomes(likeinvestment)thatcanbeexploredatamicrolevel.Similarly,whileindividualbank-levelresponsesfromtheBLSareinformativefor

ECBWorkingPaperSeriesNo29754

thedemandaspecificbankfaces,informationfromtheSAFEsurveyallowsforassessinghow

heterogeneityindemandcaninteractwithcreditsupplyconditions.Overall,combiningtheserichmicrolevelsurveydatacanallowforanin-depthexplorationofthechannelsofcreditconditionsandhowbanksandfirmscanleadtovariationinhowashocktocreditconditionspropagates.

First,wefindthat,asexpected,tighter(looser)creditstandardslead(a)toadecrease(increase)infirmlevelreportedloanavailability,(b)toanincreased(decreased)likelihoodofreportingaccesstofinanceastheworstproblemfacingtheirfirmand(c)tolower(higher)investment.Yetwhencountry-sector-timefixedeffectsareincludedinadditiontofirmlevelfixedeffects,theeffectsofcreditstandardsonfirms’accesstofinanceandinvestmentbecomeinsignificant,implyingthatbanks’creditsupplydecisionsandfirms’investmentdecisionsaredominatedbysectoralandcyclicalconsiderations.However,whenafirmhasanincreaseddemandforcredit,itissignificantlymorelikelytoreportcreditconstraintsandlowerinvestmentwhenfacedwithtightercreditstandards,evenwhencomparedtootherfirmsinthesamesector,countryandtimeperiod.Thissuggeststhat,inadditiontosectoralandcyclicalfactors,itiscrucialtoconsiderindividualfirms’creditdemandconditionswhenassessingtheimpactofachangeincreditsupplyonfirmoutcomes.

Second,usinginformationonfirms’financingstructurefromtheSAFE,wefindevidencethatadiversifiedfundingbasemitigatestheimpactofacredittightening.Havingamorevariedfundingbasecancounteracttheeffectofatighteningforthosefirmswhohaveincreasedneedforbankloans,indicatingthatdifferentiatedsourcesoffundscanhelpsmoothcreditconstraintscomingfromatighterbankcreditconditions.

Third,wefindtheeffectsfromchangesincreditconditionsareasymmetric,asthestrongesteffectsonaccesstofinanceandinvestmentarereportedbyfirmsduringperiodsoftightening,whileperiodsofeasingsuggestmorelimitedeffects.

Inaddition,wefindthattighter(looser)creditstandardsmainlypassthroughtoinvestmentthroughalower(higher)probabilityofincreasinginvestment,ratherthanahigher(lower)probabilityofdecreasinginvestment.Wequantifythattheimpactofaoneunitincreaseinthetightnessofcreditstandardsdecreasestheprobabilityofincreasinginvestmentby0.08pointsafteroneperiod,upto0.13pointsafter3periodsoftightening,illustratingthecombinationofbothalaggingandcumulativeeffect.Forloanavailability,theeffectsofatightening(easing)ofcreditstandardsarestrongerforincreasing(decreasing)theprobabilityofreportingdeclining

ECBWorkingPaperSeriesNo29755

loanavailability(0.03pointsafteroneperiod,risingto0.10afterthreeperiods),butitalsohassomesignificantnegative(positive)impactontheprobabilityofafirmreportingincreasing(decreasing)loanavailability.Bothoftheseeffectsarestrongrelativetotheoverallproportionoffirmsthatreportincreasesordecreaseseachperiod.

Finally,leaningonthefirm-bankmicrolevelinformation,weproposeanewmeasureofdemandadjustedcreditstandardsthatcanprovideadeeperunderstandingofthedynamicsofcreditconditionsintheeuroarea.Ourresultsshowthat,whendemandishigher,theeffectsofchangesincreditstandardsarestronger.Therefore,adjustingcreditsupplymeasuresbyconsideringalsodemandconditionscanbemoreinformativethanlookingpurelyatcreditstandardsalone.Whencomparingourdemandadjustedcreditstandardstoanunadjustedseries,wefindthatduringthesovereigndebtcrisisunadjustedcreditstandardswouldhaveshownarelativelymorebenignpicturecomparedtotheadjustedseries.Moreover,duringthetighteningperiodin2022,theadjustedseriessignalsthatcreditconditionswerelesstightoncedemandisaccountedfor.Thisnewindicatorcanbeausefuladditionalmetrictoenhanceourunderstandingofthepass-throughofcreditstandardstotherealeconomy.

Tothebestofourknowledge,thisisthefirstpaperthatexplicitlylinkstherepliesofthetwosurveysatagranularlevel.Wedosobymatchingfirm-bankleveloutcomesatahalf-yearlybasis.Inthiswaywecancontrolforbothindividualbankloansupply(fromBLS)andfirmdemand(fromSAFE)toexploretheinteractionbetweenthetwofactorsandderiveameasureofdemandadjustedcreditstandards.

Thispapercontributestotheliteraturethatusessurvey-basedinformationtoexplorethefactorsthatimpactfirms’accesstofinance.ThisispossiblethankstothewidearrayoffirmspecificinformationavailablewithintheSAFE.OurresultsparticularlyspeaktothestudyofOngenaetal.(2012)thatshowedthatfirmswithalternativesourcesoffinancearelesslikelytoneedbankcredit.Wefindthatfirmswithamorediversifiedfundingbasearelessaffectedbyabankbasedtighteningofcreditstandardsincaseswheretheyneedcredit.Additionally,ourfindingsconfirmalsothatfirmandcountry-levelcharacteristicsarerelevantdeterminantsforaccesstofinanceasinBecketal.(2005).Thepaperalsoaddstotheliteraturethatassessestheinformationcontentofbanklendingsurveystoexaminebothcreditconditionsandtheirimpactontheeconomy(LownandMorgan(2006),deBondtetal.(2010),DelGiovaneetal.(2011)andAltavillaetal.(2019)).Thisliteraturetypicallyusesloanflowstoanalysebanks’surveyresponses.Inourcase,theuseoffirmsurveydataallowsustodirectlyassesstheimpactof

ECBWorkingPaperSeriesNo29756

changesincreditsupplyonfirms’financingsituations,asfirmsreportonchangesintheircreditdemand,intheirperceivedsupplyconditionsandeconomicoutcomes.Moreover,theSAFEsurveyallowsustobuildalargesampleofresponsesovertimeinacleanfashion,buildingonpreviousworktoassessqualitativelymeasuredoutcomesandresponsesoffirms.

Therestofthepaperproceedsasfollows.Section2introducesourdatasources,section3showsourempiricalresults,section4introducesdemandadjustedcreditstandardsandsection5concludes.

2Data

Ourempiricalmethodologyreliesonseveraldatasources,thekeytwobeingtheSurveyonAccesstoFinanceforEnterprises(SAFE)andBankLendingSurvey(BLS)datasets.Acrucialinnovationofthisstudyisthatthesetwosurveysarethenmatchedatfirm-banklevelusingtheinformationonthenamesofthemainbanksasreportedbySAFEfirmsintheBvDOrbisdatabase.Webrieflydescribetheattributesofeachdataset.

2.1SAFE

TheSAFEhasbeenconductedonbehalfoftheEuropeanCentralBankandtheEuropeanCommissionsince2009.SAFEgathersfirm-levelinformationaboutthefinancialsituationandthefinancingneedsandaccesstofinanceintheeuroarea.Thesurveyisconductedathalfyearlyintervalswithquestionsexaminingthepreviousandnextsixmonths.FirmsinthesamplearerandomlyselectedfromtheDun-Bradstreetdatabase.Thesampleisstratifiedbyfirm-sizeclass,economicactivity,andcountry.Thesamplesizeforeacheconomicactivityischosentoguaranteerepresentationacrossthefourlargestindustries:manufacturing,construction,trade,andservices.Also,thesamplesizesareselectedbasedonrepresentationatthecountrylevel.ThefirsttwosurveyswereconductedwiththeperiodsofinterestbeingJanuary-JuneandJuly-December,butsincethefirstsurveyin2010,thesurveyconcentratesontheperiodsApril-SeptemberandOctober-March.Mostfirmswithinthesurveyaresmallandmedium-sizedenterprises(SMEs)andarethusmostlyreliantonfinancingfrombanksrelativetolargeenterprises.Thus,thesurveyishighlyappropriateforanalysingtheimpactofchangesinbankcreditstandardsortermsandconditions.

ECBWorkingPaperSeriesNo29757

2.2BLS/iBLS

TheBLShasbeenconductedbytheECBsince2003andasksapanelofeuroareabanksaboutchangesintheirlendingconditions.Thesurveyisconductedquarterlywithkeyquestionsfocusingonchangesincreditstandards,termsandconditions,rejectionratesandthedemandforloanssetbyorfacedbyeachbank.Questionsareeitherbackwardlookingoverthepreviousthreemonthsorforwardlookingoverthenextthreemonths.

ThispaperusesaproprietarymicroleveldatasetofindividualbankresponsestotheBLSsurvey,callediBLS.TheiBLSallowsustoexploitbanklevelheterogeneitybeyondthecountrylevelheterogeneitythatcanbeseenintheaggregatedcountry-leveldataset.ThedatasetcomprisesindividuallevelresponsestotheBLSquestionnairefrom120banksacross15euroareacountries.1

2.3Thematchingprocess-SAFE-BvDOrbis

ThedatasetusedinthispaperinvolvesmatchingtheBLSandSAFEindividuallevelrepliesbyusinganECBproprietarydatasetthatlinksSAFEfirmstothefinancialstatementsasprovidedbyBureauVanDijk(BvD)Orbisdatabase.Inaddition,BvDOrbisprovidesalistofmainbanksassociatedtothefirmsinthedatabase.ThislistisdirectlycompiledbyBvDusingacombinationoffirmregistriesanddirectinterviewswithfirmrepresentatives.Itshouldbenotedthatfirmscouldreportmorethanonebank.Weexploitthisfulluniverseofbankswithinourmatchingprocess,inordertomatchallpossiblebankstoeachindividualSAFEfirm.Thiscontrastswithpriorapproachesthatmadeanassumptionthatbankswereorderedintermsoftheirimportancetoeachindividualfirm(seeforexampleCorbisieroandFaccia(2020),Ferrandoetal.(2019)andKalemli-Özcanetal.(2022)).

GiventhecharacteristicsofthebankvariableintheBvDOrbisdataset,weneedtoassumethatbank-firmrelationshipsareunchangedthroughoutoursample.Thisassumptionisnotsostrongasitmaylookprimafacie,asingeneraltheserelationshipstendtobestickyovertime.ThisisbackedbyevidenceseeninKalemli-Özcanetal.(2022)andGiannettiandOngena(2012),whofindthatbycomparingmultiplevintagesoftheOrbis-Amadeusbank-firmmatches,thatthereareverylimitedchangesovertime.Moreover,thisisevenlesslikelytobeanissuein

1BanksinCyprus,Greece,MaltaandSloveniaarenotincludedintheiBLSsample.Ourfinalmatchedsampleisfurtherlimitedbydataavailabilityonthenamesoffirms’banks,asisshowninTable4.

ECBWorkingPaperSeriesNo29758

ourcaseinthatwedonotrestrictourselvestoonlyfocusingonasinglebankforagivenfirm,andinsteaduseallforwhomtheyhavearelationship.

ThedataprovidedintheBvDOrbisdatasetcomeinuncleanedformat,withonlytherawtextnamesofbanks.Assuch,thematchingprocessbetweenSAFEandBLSisnecessarilyamulti-stepautomatedandmanualapproach.Asafirststep,firmsforwhomtheirbanks’namesmatchpreciselythelegalnameofaBLSbankareautomaticallymappedtothatbank.Regardingtheremaindingones,manualmatchingisundertaken,witheachuniqueentryassessedandmatchedtoaBLSbankifamatchexists.Suchanapproachispreferabletoafuzzymatchingapproach,asinmanycaseseithercolloquialnamesareusedforbanksorindividualbankshavesimilarnames.Thisbothmaximisesthesizeofourmatchedsetandminimisesourrisksoffalsepositives.

2.4Datasetcharacteristics

Ourinitialdatasetincludes29,768firms,ofwhich22,799arematchedtoatleastonebank.Ofthese,13,703(60.1%)arematchedtoonesinglebank,whiletherestarematchedtomorethanonebankfromtheBLSsample,varyingfromatotalof2matchesto19forthreecases.ThedistributionoftheseisshowninTable1.

Regardingthepanelstructureofthedataset,thetotalnumberoffirmsbrokendownbytheirnumberofoccurrencesisshowninTable2whilethetotalnumberofobservationsperwaveisshowninTable3.Ascanbeseenthemajorityoffirmsappearmorethanonceinthesurvey,allowingustousefirmfixedeffects.Regardingthetimedistribution,surveyroundspriortotheeleventhwave(September2014)arerelativelyunderrepresented,withthefirstthreeroundshavingparticularlylownumbers.ThisisjusttheresultofthegreatercoverageoffirmsintheanonymisedSAFE-BvDOrbisdatasetfromthispointonwards.

ECBWorkingPaperSeriesNo29759

Table1.Distributionoftotalnumberofbanksforeachfirm

NumberofBLSMatches

TotalMatches

Percentage

1

13703

60.10

2

3700

16.23

3

1736

7.61

4

1024

4.49

5

579

2.54

6

551

2.42

7

407

1.79

8

286

1.25

9

229

1.00

10-14

501

2.21

15-19

83

0.36

Total

22799

100

Table2.Distributiionofthenumberofroundseachfirmappearsinthesurvey

Appearancesindataset

Numberoffirms

Percentageofdataset

1

7854

34.45

2

4578

20.08

3

3019

13.24

4

1990

8.73

5

1809

7.93

6

970

4.25

7

1231

5.40

8

534

2.34

9

302

1.32

10-14

472

2.07

15-22

40

0.18

Total

22799

100

ECBWorkingPaperSeriesNo297510

Table3.Totalobservationsbywave

Wavenumber

Totalobservations

Wavenumber

Totalobservations

1

39

15

3621

2

145

16

3901

3

182

17

3637

4

602

18

3713

5

749

19

3579

6

987

20

3686

7

1411

21

3536

8

1706

22

3456

9

2226

23

3552

10

2023

24

3403

11

3603

25

3424

12

3922

26

3526

13

3628

27

2520

14

3658

Wehaveobservationsfrom11euroareacountries,limited,ononeside,bycoverageintheiBLSdataset,and,ontheotherside,bycoverageinthefirm-bankmatchingdataintheBvDOrbisdatabase.ThedistributionofthenumberoffirmsbycountryisshowninTable4,alongsidetheirrelativematchingrates.Ingeneral,thelargercountrieshaveahighernumberofobservations,withGermany,SpainandFrancemakingupthelargestproportionofoursample.Regardingmatching,weseethatinAustriaandGermanytherelativematchingrateislower,partlyreflectingthehighnumberofbankswithinthosecountries,whilecountrieswithamoreconcentratedbankingsystem(likeSpain)haveahighermatchingrate.

Table4.Distributionofsamplebycountry

ECBWorkingPaperSeriesNo297511

Matched

Country

TotalFirms

Un-

matched

uniquefirms

infinaldataset

Match-ing

Success

Rate

Total

observa-tionsinsample

Averageobserva-tionsperfirm

Austria

3382

1796

1586

46.90%

4793

3.02

Germany

7354

3365

3989

54.24%

12117

3.04

Estonia

325

1

324

99.69%

607

1.87

Spain

5276

127

5149

97.59%

17418

3.38

France

4272

813

3459

80.97%

10912

3.15

Ireland

2023

100

1923

95.06%

6206

3.23

Lithuania

647

104

543

83.93%

1154

2.13

Luxembourg

259

11

248

95.75%

511

2.06

Latvia

544

255

289

53.13%

557

1.93

Netherlands

3166

217

2949

93.15%

8967

3.04

Portugal

2520

180

2340

92.86%

7193

3.07

TOTAL:

29768

6969

22799

76.59%

70435

3.09

2.5KeyVariables

Forouranalysis,weusemeasuresofcreditsupplyfromtheBLSandassesstheirimpactonfirmlevelresultsfromtheSAFE.Thisexploitsakeyadvantageofourmatcheddataset.SincetheSAFE,byconstruction,isnotabalancedpanelwecannotdelveintothelongerruneffectsofchangesinloansupplyatthefirmlevel.Bycontrast,usingtheinformationfromtheBLSwecanconstructalongrunmeasureofcreditsupplyasabackwardlookingaverage.Fortheanalysiswegobackuptooneandahalfyears(threesurveyroundsinSAFE),alongsidemorecontemporaneousmetrics.

Ourmeasureofcreditsupplyisbasedonthebanks’responsesoncreditstandardsfromtheBLS.Banksareaskedeachquarteraboutchangesintheircreditstandardsappliedtoloanstofirmsoverthepreviousthreemonths.Bankscanrespondwithfivepossibleanswers,each

ECBWorkingPaperSeriesNo297512

reflectingthedirectionandthelevelofintensityofchanges.Thequestionisframedintermsofatighteningoraneasing,withbanksstatingwhether:(withthestandardnumericalvaluesassignedtoeachresponseinbracketsafterwards)"tightenedconsiderably”(1),“tightenedsomewhat”(2),“unchanged”(3),“easedsomewhat”(4)and“easedconsiderably”(5).

AstheBLSisquarterlyandtheSAFEisbiannual(firmsareaskedaboutthechangesovertheprevioussixmonths),weaveragebanks’responsesoverthetwoBLSroundsthatcorrespondtoeachSAFEround.Inaddition,asfirmsareoftenmatchedtomorethanonebank,weconstructafirmlevelmeasureofcreditstandardsbyaveragingtheresponsesofeachbankmatchedtothefirm.Thisgivesusacontinuousscalemeasuringthefulluniverseofcreditstandardsfacedbyeachfirminawave.Wetransformtheresponsestobeonascalebetween-2and+2,with+2beingthestrongesttighteningand-2thestrongesteasingeasing.2

Weareinterestedinboththeimpactofshort-runchangesincreditstandardsbutalsothelongerrunchanges,astakingindividualsurveyroundresponsesalonewillnotaccountfortheimpactofcontinuouschangesincreditstandardsacrossmultipleperiods.Lettingoneperiodcsf,tdenotetheindividualperiodcreditstandardsfacingfirmfattimet.Weconstructthefollowingmeasure:

WeconstructthismeasureforK=1,2,3.Thisprovides3measuresofcreditstandards-K=1issimplyequivalenttooneperiodcst,fandisthesingleperiodchangeincontemporaneouscreditstandards.ForK=2andK=3wemeasurethelongerruncreditstandardsfacingafirm,forperiodsofayearandayearandahalfrespectively.AoneunitincreaseforK=1isequivalenttoasingleunitofincreasedtightening,whileforK=2andK=3,aoneunitincreasecanbeinterpretedasamorelong-runcontinuoustightening.

FromtheSAFE,weareinterestedinassessingpotentialresponsesoffirmstochangesincreditstandards.Wedosobyextractingthreevariablesmeasuring(a)changesintheavailabilityofbankloans(b)wh

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论