下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页单元综合检测一数与式学用P10(80分钟120分)一、选择题(每小题4分,满分40分)1.如果向北走6步记作+6步,那么向南走8步记作(C)A.+8步 B.+14步C.-8步 D.-2步【解析】∵向北走6步记作+6步,∴向南走8步记作-8步.2.某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为(B)A.96.8×105 B.9.68×106C.9.68×107 D.0.968×108【解析】将9680000用科学记数法表示为9.68×106.3.下列运算正确的是(C)A.-a(a-b)=-a2-abB.(2ab)2+a2b=4abC.2ab·3a=6a2bD.(a-1)(1-a)=a2-1【解析】-a(a-b)=-a2+ab,A错误;(2ab)2+a2b=4a2b2+a2b,B错误;2ab·3a=6a2b,C正确;(a-1)(1-a)=-a2+2a-1,D错误.4.在算式(-2)(-3)的中填上运算符号,使结果最小,运算符号是(A)A.加号 B.减号C.乘号 D.除号【解析】(-2)+(-3)=-5;(-2)-(-3)=-2+3=1;(-2)×(-3)=6;(-2)÷(-3)=23,则在算式(-2)(-3)的中填上运算符号,使结果最小,运算符号是加号.5.实数a,b在数轴上的位置如图所示,下列各式正确的是(D)A.a-b>0 B.ab>0C.|a|+b<0 D.a+b>0【解析】根据数轴可知-2<a<-1,b>2,则a-b<0,ab<0,|a|+b>0,a+b>0,故D项正确.6.如果分式x2-12x+2的值为0,则A.1 B.0 C.-1 D.±1【解析】由分式的值为0,可得x2-1=0,7.设n是正整数,且12<n<20,则n的值为(B)A.3 B.4 C.5 D.6【解析】∵3<12<4,4<20<5,∴由12<n<20得正整数n=4.8.已知等式x2-4x+4x-2+(x-2)2=A.1 B.2C.3 D.1或3【解析】由题意知,当x≥2时,方程无解,故x<2,此时原方程可化为(x-2)2=1,解得x1=3,x2=1,综上,x=1.9.已知x+y=43,x-y=3,则式子x-y+4xyA.48 B.123 C.16 D.12【解析】x-y+4xyx-yx+y-4xyx+y=(x-y)10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示,设左上角与右下角的阴影部分面积之差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足(B)A.a=52b B.a=3C.a=72b D.a=4【解析】如图,左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,AE+ED=AE+a,BP+PC=4b+PC,∴AE+a=4b+PC,即AE=PC+4b-a,∴阴影部分面积之差S=AE·AF-PC·CG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,∵面积之差S始终保持不变,∴3b-a=0,即a=3b.二、填空题(每小题5分,满分20分)11.分解因式:x3-x=x(x+1)(x-1).
【解析】x3-x=x(x2-1)=x(x+1)(x-1).12.若y=x-12+12-x-6,则【解析】由题意可知x-12≥0,12-x≥0,解得x=12,∴y=13.一组按规律排列的式子:a2,a43,a65,a87,…,则第n【解析】分子部分为a的偶数次幂;分母为连续奇数,所以第n个式子是a214.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=-1,那么(1+i)·(1-i)=2.
【解析】由题意可知(1+i)·(1-i)=1-i2=1-(-1)=2.三、解答题(满分60分)15.(8分)计算:-|4-12|-(π-3.14)0+(1-cos30°)×12解:原式=-(4-23)-1+1-3=-4+23-1+4-23=-1.16.(8分)先化简,再求值:1a+2-1÷解:原式=1=-(=-1a17.(10分)已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.解:原式=4x2-12x+9-x2+y2-y2=3x2-12x+9=3(x2-4x+3),∵x2-4x-1=0,∴把x2-4x=1代入化简后的代数式,得原式=12.18.(10分)已知α,β为整数,有如下两个代数式22α,24(1)当α=-1,β=0时,求各个代数式的值.(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.解:(1)把α=-1代入代数式,得22α=14把β=0代入代数式,得24β=(2)不能.理由:24β=222β∵α,β为整数,∴1-2β为奇数,2α为偶数,∴22α≠2419.(12分)观察以下一系列等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;(1)请按这个顺序仿照前面的等式写出第④个等式;
(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律;
(3)请利用上述规律计算:20+21+22+23+…+21000.解:(1)24-23=16-8=23.(2)2n-2n-1=2n-1.(3)∵20=21-20,21=22-21,22=23-22,…,21000=21001-21000,∴20+21+22+23+…+21000=(21-20)+(22-21)+(23-22)+…+(21001-21000)=21001-20=21001-1.20.(12分)合肥白马批发市场某服装店积压了100件某种服装,为使这批服装尽快脱手,该服装店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.3次降价处理销售结果如下表:降价次数一二三销售件数104050(1)跳楼价占原价的百分比是多少?(2)该服装按新销售方案销售,相比原价全部售完,哪种方案更盈利?解:(1)设原价为1,则跳楼价为2.5×1×(1-30%)×(1-30%)×(1-30%)=2.5×0.73,所以跳楼价占原价的百分比为2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水井工程合同范例
- 林场砍树合同范例
- 数控车床合同范例
- 合同范例药品格式
- 机器交易合同范例
- 景区托管协议合同范例
- 护坡绿化劳务合同范例
- 房屋漏水施工合同范例
- 商场货运合同范例
- 无旅游合同范例
- 2024年度上海市高校教师资格证之高等教育心理学题库与答案
- 第三章+相互作用-力+大单元教学设计 高一上学期物理人教版(2019)必修第一册
- 中国航空协会:2024低空经济场景白皮书
- 体育赛事组织服务协议
- 适合全院护士讲课
- 自然科学基金项目申报书(模板)
- 2024年木屑购销合同范本
- 部编版二年级上册-课文一-快乐读书吧:读读童话故事-孤独的小螃蟹(课件)(共26张课件)
- 第二章 旅游线路类型及设计原则
- 批判与创意思考学习通超星期末考试答案章节答案2024年
- 项目工作计划表模板(共6篇)
评论
0/150
提交评论