版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖北省咸宁市赤壁市中学中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列四个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.2.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣23.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16π D.84.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为()A.8 B.10 C.12 D.165.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN=y°,则点(x,y)一定在()A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对6.的相反数是A.4 B. C. D.7.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+ B.2+ C.2﹣1 D.2+19.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是()A. B. C. D.10.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48二、填空题(共7小题,每小题3分,满分21分)11.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.12.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.13.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.14.因式分解:2m2﹣8n2=.15.不等式>4﹣x的解集为_____.16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.17.(﹣12)﹣2﹣(3.14﹣π)0三、解答题(共7小题,满分69分)18.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).19.(5分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?20.(8分)如图,正方形ABCD中,BD为对角线.(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求△DEF的周长.21.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.22.(10分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.(1)①已知O为坐标原点,点,,则_________,_________;②点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.23.(12分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.24.(14分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【解析】
先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.3、A【解析】
由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.4、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.5、B【解析】
由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=∠MON,∴,∴点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.6、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.7、C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.考点:角的度量.8、D【解析】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有,解得.故选D.9、B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.10、D【解析】
由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.二、填空题(共7小题,每小题3分,满分21分)11、3<d<7【解析】
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围.【详解】∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.12、45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.13、23【解析】
用女生人数除以总人数即可.【详解】由题意得,恰好是女生的准考证的概率是2350故答案为:2350【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn14、2(m+2n)(m﹣2n).【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考点:提公因式法与公式法的综合运用.15、x>1.【解析】
按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.16、【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.考点:概率的计算.17、3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.原式=4-1=3.考点:负整数指数幂;零指数幂.三、解答题(共7小题,满分69分)18、旗杆AB的高为(4+1)m.【解析】试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗杆AB的高为(4+1)m.19、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解析】
(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;【详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得,解得k=﹣50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.20、(1)见解析;(2)2+1.【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案.详解:(1)如图,EF为所作;(2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,∴∠DEF=90°,∠EDF=∠EFD=15°,DE=EF=CD=2,∴DF=DE=2,∴△DEF的周长=DF+DE+EF=2+1.点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.21、(1)36,40,1;(2).【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.22、(1)①3,1;②最小值为3;(1)【解析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;【详解】解:(1)①如图1中,观察图象可知DAO=1+1=3,DBO=1,故答案为3,1.②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;(ii)当点C在坐标轴上时(,),易得为3;(ⅲ)当点C在第二象限时(),可得;(ⅳ)当点C在第四象限时(),可得;综上所述,当时,取得最小值为3;(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.【点睛】本题考查一次函数的综合题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 做幼师的心得体会范本多篇
- DB12T 598.15-2015 天津市建设项目用地控制指标 第15部分:民用航空运输机场项目
- 中秋节日慰问信范文(12篇)
- 文书模板-分床协议书
- 英语配音课件教学课件
- 智能运输系统 体系结构 服务 征求意见稿
- 光纤通信试题及答案
- 外国语学校等校联考八年级上学期语文期末考试试卷
- 黄家镇桂花井初级中学八年级上学期语文第一次月考试卷
- 猴子温泉课件教学课件
- 一年级上册劳动《各种各样的职业》课件
- 标准化建设工作汇报
- 广东省惠州市2022-2023学年七年级上学期期末数学试题(含答案)
- GB/T 10069.3-2024旋转电机噪声测定方法及限值第3部分:噪声限值
- 《红楼梦》菊花诗鉴赏-部编版2019下册语文课件
- 统编版(2024新版)道德与法治七年级上册8.1《认识生命》教案
- 九年级上册道德与法治 第八课第二框《共圆中国梦》(公开课)教学设计
- 4.13.1《在劳动中创造人生价值》教学设计人教统编版道德与法治七年级上册2024新教材
- 2024年全国职业院校技能大赛中职(数字产品检测与维护赛项)考试题库(含答案)
- 2024年头孢菌素行业现状分析:头孢菌素国内市场规模达到5515.47亿元
- 班主任能力大赛情景答辩环节真题及答案高中组
评论
0/150
提交评论