




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东梅州兴宁四矿中学中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元2.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110° B.115° C.120° D.130°3.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.4.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-105.已知实数a、b满足,则A. B. C. D.6.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A. B.C. D.7.如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C. D.360°-α9.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–3610.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.6二、填空题(共7小题,每小题3分,满分21分)11.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.12.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元13.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).14.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.15.比较大小:4(填入“>”或“<”号)16.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.17.函数中自变量的取值范围是______________三、解答题(共7小题,满分69分)18.(10分)(1)计算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.19.(5分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.20.(8分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.21.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.22.(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中n,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.23.(12分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).24.(14分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.2、A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.3、A【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【详解】根据在△ABC中,∠C=90°,那么sinB==,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.4、C【解析】
根据多项式乘以多项式的法则进行计算即可.【详解】x-2x+5故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.5、C【解析】
根据不等式的性质进行判断.【详解】解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.【点睛】考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:,实际用时为:.所列方程为:,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7、A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8、C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.9、D【解析】
根据有理数的乘法法则进行计算即可.【详解】故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.10、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】
作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB•sin∠BAC=,由题意得,∠C=45°,∴BC==(千米),故答案为3.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.12、300【解析】
设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x元,标价为y元,依题意得,解得故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.13、【解析】试题分析:根据题意得;;;根据以上规律可得:=.考点:规律题.14、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.15、>【解析】
试题解析:∵<∴4<.考点:实数的大小比较.【详解】请在此输入详解!16、【解析】
解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为,故答案为.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.17、x≤2且x≠1【解析】
解:根据题意得:且x−1≠0,解得:且故答案为且三、解答题(共7小题,满分69分)18、(1);(1)1.【解析】
(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.【详解】(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,当a﹣b=时,原式=()1=1.【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.19、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.【解析】
(2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;(2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.【详解】(2)∵C是半径OB中点,∴OCOB=2.∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如图2,连接AE,CE.∵DE是AC垂直平分线,∴AE=CE.∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:①当CD=CE时.∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②当CD=DE时.∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.20、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ与OQ的比值的最大值为;(3)S△PBA=3.【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.【详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+2),Q(n,﹣n+2),则PE=﹣m2+m+2,QD=﹣n+2.又∵=y.∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ与OQ的比值的最大值为.(3)如图2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此时PB过点(2,4).设直线PB解析式为,y=kx+2.把点(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直线PB解析式为,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.当x=5时,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).过P作PH⊥cy轴于点H.则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.S△OAB=OA•OB=×2×2=7.S△BHP=PH•BH=×5×3=35.∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.21、(1)证明见解析;(2)阴影部分的面积为.【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22、(1)n=3,见解析;(2)125人;(3)P=【解析】
(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.【详解】(1)解:(1)n=20-1-3-8-5=3;强化训练前的中位数7+82强化训练后的平均分为120强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×5+3(3)(3)画树状图为:共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,所以所抽取的两名同学恰好是一男一女的概率P=1220【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年份四月装修合同门槛石与地暖伸缩缝处理条款
- 教师个人教育教学总结
- 初中物理教研组期末工作总结
- 分布式光伏发电项目EPC合同
- 2025人工智能技术外包服务合同范本
- 跟着学管理课件
- 初五迎财神课件
- 业务咨询类合同标准文本
- 低价转让电车合同范例
- 2003漯河购房合同标准文本
- 蚕豆病课件教学课件
- 7 《包身工》 公开课一等奖创新教案统编版高中语文选择性必修中册
- 干部人事档案任前审核登记表范表
- 汽车吊吊装 专项施工方案
- 娱乐场所安全管理制度与应急预案
- Python试题库(附参考答案)
- 2024年全国眼视光行业眼镜验光员技能大赛理论参考试题库(含答案)
- 江苏省南京市化学中考试题及解答参考(2024年)
- 化学键教学设计 人教版
- DL∕T 612-2017 电力行业锅炉压力容器安全监督规程
- 2024年全国“红旗杯”班组长大赛(复赛)备考试题库(简答、案例分析题)
评论
0/150
提交评论