版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page25河南省豫北名校2024年高三数学模拟考试理科考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:高考全部内容.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,且,则()A.-1 B.1 C.2 D.3【答案】A【解析】【分析】先依据一元二次不等式的解法求出集合,再利用一元一次不等式的性质求出集合,然后利用交集的运算性质即可求出结果.【详解】因为集合,集合,又因为,所以,解得:,故选:.2.若,则()A. B.5 C.3 D.【答案】B【解析】【分析】依据复数运算,复数的模计算即可解决.【详解】由题知,,故选:B3.已知向量,若,则()A. B.2 C.1 D.【答案】C【解析】【分析】依据平面对量的共线定理可知,存在实数使得,再依据平面对量的坐标运算即可计算得出结果.【详解】由,且都是非零向量,可知存在实数使得,即满意所以,得故选:C.4.下列函数中,在定义域内既是奇函数又单调递增的是()A. B. C. D.【答案】D【解析】【分析】依据选取特别值可解除AB,利用偶函数的定义可以解除C,依据奇函数和复合函数的单调性质推断D.【详解】对于A选项,因为的定义域为,但,,故,所以函数不是奇函数,不符合条件,A错误;对于B选项,函数的定义域为,,,,函数在不是增函数,不符合条件,B错误;对于C选项,函数的定义域为,,函数为偶函数,不符合条件,C错误;D选项,因为函数的定义域为,,所以函数为奇函数,将函数式变为,因为函数在单调递增,且,所以函数在单调递增,且,所以函数在单调递减,且,所以随着增大,函数的函数值也增大,即是单调递增函数,符合条件.故选:D.5.已知某圆台的上底面和下底面的面积分别为、,高为,则该圆台的体积为()A. B. C. D.【答案】C【解析】【分析】利用台体的体积公式可求得该圆台的体积.【详解】由题意可知,该圆台的体积为.故选:C.6.的绽开式中常数项为()A.-160 B.60 C.240 D.-192【答案】B【解析】【分析】由题意可得要得的绽开式中常数,只需求出的展式中项,依据二项定理求出出的展式中项即可得答案.【详解】解:因为的展式为:,要得的绽开式中常数,只需求出的展式中项即可.所以令,解得,所以的展式中项的系数为,所以的绽开式中常数项为60.故选:B.7.我国古代数学著作《算法统宗》中有如下问题:“今有善走者,日增等里,首日行走一百里,九日共行一千二百六十里,问日增几何?”其大意是:现有一位擅长步行的人,第一天行走了一百里,以后每天比前一天多走里,九天他共行走了一千二百六十里,求的值.关于该问题,下列结论错误的是()A. B.此人第三天行走了一百二十里C.此人前七天共行走了九百一十里 D.此人前八天共行走了一千零八十里【答案】A【解析】【分析】设此人第天走里,则数列是公差为的等差数列,记数列的前项和为,由题意可得出关于、方程组,解出的值,可推断A选项;利用等差数列的通项公式可推断B选项;利用等差数列的求和公式可推断CD选项.【详解】设此人第天走里,则数列是公差为的等差数列,记数列的前项和为,由题意可得,解得,A错;,B对;,C对;,D对.故选:A.8.已知函数的图象向右平移个单位长度后,与函数的图象重合,则的单调递减区间为()A. B.C. D.【答案】C【解析】【分析】由题意利用三角函数图象的变换规律求出平移之后的解析式,令其等于,利用诱导公式以及三角函数的周期性求出的值,即可得的解析式,再利用余弦函数的单调减区间即可求解.【详解】函数的图象向右平移个单位长度后可得,因为所得的图象与的图象重合,所以,可得:,所以,因为,所以,,所以,令,解得,即的单调递减区间为.故选:C.【点睛】关键点点睛:本题解题的关键点是平移之后的图象与图象重合,须要将两个解析式化为同名的,求出再利用整体代入的方法求单调区间.9.若P是一个质数,则像这样的正整数被称为梅森数.从50以内的全部质数中任取两个数,则这两个数都为梅森数的概率为()A. B. C. D.【答案】A【解析】【分析】找出50以内的全部质数和梅森数,利用组合数公式和古典概型概率计算公式可得答案.【详解】50以内的全部质数为共15个,
梅森数有,,三个,从50以内的全部质数中任取两个数有种状况,两个数都为梅森数有种状况,所以两个数都为梅森数的概率为.故选:A.10.已知抛物线的焦点为F,动点M在C上,圆M的半径为1,过点F的直线与圆M相切于点N,则的最小值为()A.5 B.6 C.7 D.8【答案】D【解析】【分析】由题作图,由图可得,依据抛物线定义可得等于点到准线的距离,依据图形可得最小值状况,从而可得的最小值.【详解】因为抛物线,所以焦点坐标为,如下图所示:连接,过作垂直准线于,则在直角中,,所以,由抛物线的定义得:,则由图可得的最小值即抛物线顶点到准线的距离,即,所以.故选:D.11.已知数列满意,则数列的前40项和()A. B. C. D.【答案】D【解析】【分析】由已知,依据题意由可得:,从而计算,由递推可得:,结合可得:,从而计算,将两组和合并即可完成求解.【详解】由已知,数列满意①,②,②①得;,所以,由递推可得:③,③②得;,,所以.故选:D.12.已知,若不等式恒成立,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】当时,不等式明显成立,当时,转化为恒成立,利用函数的单调性,转化为在上恒成立,构造函数,利用导数求出其最大值,可求出的取值范围.【详解】由有意义,知,因为,所以当时,,,不等式明显成立,当时,不等式恒成立,等价于恒成立,等价于恒成立,设,因为,所以在上单调递增,因,,所以,所以恒成立,等价于,又在上单调递增,所以不等式等价于在上恒成立,等价于在上恒成立,等价于在上恒成立,令,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以在上恒成立等价于.综上所述:的取值范围为.故选:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.设x,y满意约束条件,则的最大值为___________.【答案】5【解析】【分析】作出可行域,数形结合求解,【详解】作出可行域如图所示,由得,表示斜率为的直线与轴的截距,数形结合得,当直线过点时取最大值,故答案:514.已知为上的奇函数,当时,,则不等式的解集为___________.【答案】【解析】【分析】由函数的奇偶性与单调性转化后求解,【详解】由函数与均在上单调递增,故在上单调递增,而为上奇函数,故在上单调递增,等价于,得,故答案为:15.如图,在梯形ABCD中,,将沿边AC翻折,使点D翻折到P点,且,则三棱锥外接球的表面积是___________.【答案】【解析】【分析】先证明出面,作出的外心,过作,推断出三棱锥外接球的球心必在直线上,设外接球的半径为,利用球的性质列方程求出,即可求出三棱锥外接球的表面积.【详解】在梯形ABCD中,,所以梯形ABCD为等腰梯形,.因为,所以,所以,即.所以,.因为,所以,所以.又面,面,,所以面.在中,作出其外心如图所示:所以,.过作,由球性质可知,三棱锥外接球的球心必在直线上.设外接球的半径为,由球的性质可得:,即,解得:.所以三棱锥外接球的表面积为.故答案为:.16.已知椭圆和双曲线有共同的左、右焦点,M是它们的一个交点,且,记和的离心率分别为,则的最小值是___________.【答案】【解析】【分析】设椭圆的长半轴长为,双曲线的实半轴长为,依据椭圆及双曲线的定义可解出,结合,,依据余弦定理列式,可得方程,最终依据基本不等式答案.【详解】不妨设M为第一象限的点.如图,设椭圆的长半轴长为,双曲线的实半轴长为,则依据椭圆及双曲线的定义知,,所以,,设在中,,由余弦定理得,,化简得,即,所以,所以,当且仅当时,即等号成立,所以的最小值为.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必需作答.第22、23题为选考题,考生依据要求作答.(一)必考题:共60分.17.已知的内角所对的边分别为,且.(1)求角B;(2)若,求周长的最大值.【答案】(1)(2)【解析】【分析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)利用正弦定理将的周长用角来表示,结合三角函数的学问求得周长的最大值.【小问1详解】由正弦定理得,由余弦定理得,由于,所以.【小问2详解】由正弦定理得,,,的周长为,由于,所以,当,即时,所以周长的最大值为.18.甲、乙两家公司生产同一种零件,其员工的日工资方案如下:甲公司,底薪140元,另外每生产一个零件的工资为2元;乙公司,无底薪,生产42个零件以内(含42个)的员工每个零件4元,超出42个的部分每个5元.假设同一公司的员工一天生产的零件个数相同,现从这两家公司各随机选取一名员工,并分别记录其30天生产的零件个数,得到如下频数表:甲公司一名员工生产零件个数频数表生产零件个数3839404142天数59565乙公司一名员工生产零件个数频数表生产零件个数4041424344天数39693若将频率视为概率,回答以下问题:(1)现从记录甲公司某员工30天生产的零件个数中随机抽取3天的个数,求这3天生产的零件个数都不高于39的概率;(2)小明准备到甲、乙两家公司中的一家应聘生产零件的工作,假如仅从日工资的角度考虑,请利用所学的统计学学问为小明做出选择,并说明理由.【答案】(1)(2)小明应当选择到甲公司应聘,理由见解析.【解析】【分析】(1)依据甲公司员工生产零件个数频数表以及古典概型概率公式计算可得结果;(2)设甲公司员工的日工资为,则的全部可能取值为:,求出的分布列以及数学期望;设乙公司员工的日工资为,则的全部可能取值为:,求出的分布列以及数学期望,比较两个数学期望的大小可作出选择.【小问1详解】记“这3天生产的零件个数都不高于39”为事务,则.所以这3天生产的零件个数都不高于39的概率为.【小问2详解】设甲公司员工的日工资为,当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,又,,,,,所以的分布列为:所以元.所以甲公司员工的日工资的平均值为元.设乙公司员工的日工资为,则当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,当生产零件个数为个时,元,又,,,,,所以的分布列为:所以元.所以乙公司员工的日工资的平均值为元.因为,所以假如仅从日工资的角度考虑的话,小明应当选择到甲公司应聘.19.在四棱锥中,平面底面ABCD,底面ABCD是菱形,E是PD的中点,,,.(1)证明:平面EAC;(2)求直线EC与平面PAB所成角的正弦值.【答案】(1)证明见详解(2)【解析】【分析】(1)构造中位线,通过线线平行证明线面平行;(2)建立空间直角坐标系,先求平面PAB的法向量,再求与法向量所成角的余弦值,再得到结果.【小问1详解】如图1,连接,设与交于点,连接.因为底面ABCD是菱形,所以为的中点,又E是PD的中点,所以,又平面EAC,平面EAC,所以平面EAC;【小问2详解】如图2,取的中点.在中,,,为的中点,所以,所以.因为平面底面ABCD,平面底面ABCD,所以底面ABCD,又底面ABCD,所以.在菱形ABCD中,,,所以△与△是等边三角形,所以,,.以为原点,为轴,为轴,为轴建立空间直角坐标系,则,,,,,,,则,,.设为平面的一个法向量,则,即,令,则,则..所以直线EC与平面PAB所成角的正弦值.20.已知双曲线的右焦点为,且点在双曲线C上.(1)求双曲线C的方程;(2)过点F的直线与双曲线C的右支交于A,B两点,在x轴上是否存在不与F重合的点P,使得点F到直线PA,PB的距离始终相等?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)(2)存在,,理由见解析【解析】【分析】(1)首先得,再将点的坐标代入双曲线方程,联立方程求解,即可求双曲线方程;(2)假设存在点,据题意设,联立方程得到,,再由点到直线的距离相等可得,由此代入式子即可求得点坐标,再考虑斜率不存在的状况即可【小问1详解】由题意得,,所以,所以,,所以双曲线C的标准方程为;【小问2详解】假设存,设,,由题意知,直线斜率不为0,设直线,联立,消去,得,则,,且,,因为使得点F到直线PA,PB的距离相等,所以PF是的角平分线,则,即,则,整理得,故,即,因为,所以,此时;当直线的斜率不存在时,依据抛物线的对称性,易得也能让点F到直线PA,PB的距离相等;综上所述,故存在满意题意21.已知函数.(1)当时,证明:对随意的,都有;(2)证明:.【答案】(1)见解析(2)见解析【解析】【分析】证明,所以,求函数即可.依据原题可以转化证明,也就是证明结合第一问可得.【小问1详解】设函数,在上单调递增,,即又因为,因为,所以,即在恒成立,所以,得证.【小问2详解】,而,欲证即证,也就是证对即可.即证,即证,视察可知与有关系,由(1)知时对恒成立即,故得证毕.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.假如多做,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度停车场排水系统施工合同规范文本3篇
- 固化剂采购合同6篇
- 编程软件课程设计
- 抗肿瘤新药行业专题
- 脱甲烷塔课程设计
- 2024幼儿园招生工作计划(31篇)
- 算法课的课程设计
- 线上课程设计基本要素
- 算数运算测试java课程设计
- 药剂课程设计报告
- 寒假安全教育主题班会PPT-
- 学生资助手册
- (完整版)聚乙烯课件
- 中国雷暴日多发区特征及雷电发展变化
- 20232023山东省高中学业水平测试会考题及答案政治
- 独一味(正式稿2)
- 山西太原晋阳湖总体规划城市设计景观方案文本
- 干部业绩相关信息采集表
- 八年级上综合性学习 我们的互联网时代 练习卷(含答案)
- 中西文化概论(第三版)PPT完整全套教学课件
- 食品批发销售记录制度
评论
0/150
提交评论