2024年河南省商丘市虞城县春来中学中考数学模拟试卷_第1页
2024年河南省商丘市虞城县春来中学中考数学模拟试卷_第2页
2024年河南省商丘市虞城县春来中学中考数学模拟试卷_第3页
2024年河南省商丘市虞城县春来中学中考数学模拟试卷_第4页
2024年河南省商丘市虞城县春来中学中考数学模拟试卷_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2024年河南省商丘市虞城县春来中学中考数学模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)实数﹣24的倒数是()A. B.24 C. D.﹣242.(3分)下列几何体的三视图都相同的是()A. B. C. D.3.(3分)2024年1月3日,我国自主研制的AG60E电动飞机首飞成功.AG60E的最大平飞速度为218km/h,航程1100000米()A.1.1×107 B.0.11×107 C.1.1×106 D.11×1054.(3分)如图,先在纸上画两条直线a,b,使a∥b,使其直角顶点落在直线b上,若∠2=50°()A.30° B.40° C.50° D.60°5.(3分)分式化简后的结果为()A.﹣1 B.1 C. D.06.(3分)如图,二次函数y=ax2+bx+c的图象与y轴交于点A(0,2),其对称轴是直线x=,则不等式ax2+bx+c≤2的解集是()A.x≤0 B.x≤﹣1或x≥2 C.0≤x≤1 D.x≤0或x≥17.(3分)在一个不透明的盒子中装有1个白球和2个黄球,每个球除颜色外,其他都相同.从中随机摸出1个球,再从中随机摸出1个球记下颜色,则两次摸到的球的颜色不同的概率是()A. B. C. D.8.(3分)已知关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,则此方程的根是()A.x1=x2=5 B.x1=x2=2 C.x1=x2=1 D.x1=x2=﹣39.(3分)如图,把Rt△ABC放置在平面直角坐标系中,∠C=90°,点B的坐标为(0,2).将Rt△ABC绕点A逆时针旋转60°,则旋转前点C的坐标是()A. B. C. D.10.(3分)如图,在矩形ABCD中,AB=6,且ED=6,M,N分别是边AB,P是线段CE上的动点,连接PM,使PM=PN.当PM+PN的值最小时,线段PC的长为()A.2 B. C.4 D.二、填空题(每小题3分,共15分)11.(3分)如果有意义,那么x的取值范围是.12.(3分)不等式组的解集为.13.(3分)某市举办了“演说中国”青少年演讲比赛,其中综合荣誉分占30%,现场演讲分占70%,则小明的最终成绩为分.14.(3分)如图,把矩形OABC放在平面直角坐标系中,O(0,0),A(4,0),C(0,3),点P在边OC上,C重合;点Q在边OA上,A重合,AQ=2OP,QB,PB.当点Q的坐标为时,PQ⊥BQ.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,斜边AB是半圆O的直径,连接CD与AB交于点E,若△BCE是等腰三角形.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:(3x+2y)(3x﹣2y)﹣2y(2﹣2y).17.(80分)为引导学生广泛阅读文学名著,某校在七、八年级开展了以“走进名著,诵读经典”为主题的知识竞赛活动.学生竞赛成绩分为A,B,C,分别是A:0≤x<70,B:70≤x<80,D:90≤x≤100.现从七、八年级参加竞赛的学生中各随机选出20名学生的成绩整理如下:七年级学生的竞赛成绩为:82,70,86,99,86,88,84,81,91,98,93,58,81,83;八年级中等级为C的学生成绩为:89,87,85,84,84学生平均数中位数众数方差七年级8586b86八年级85a9180.76根据以上信息,解答下列问题:(1)根据表格写出a=,b=,m=;(2)根据以上数据,你认为在此次知识竞赛活动中,哪个年级的成绩更好?请说明理由(一条即可);(3)若七、八年级各有1000名学生参赛,请估计两个年级参赛学生中成绩为一般(小于80分)的学生人数.18.如图,在△ABC中,∠B=30°,作线段AB的垂直平分线,交BC于点D(1)依题意补全图形;(要求:尺规作图,保留作图痕迹,不写作法)(2)求证:CD=BD.19.如图,为了测量国旗台上旗杆DE的高度,小华在点A处利用测角仪测得旗杆底部D的仰角为27°,此时利用测角仪测得旗杆顶部E的仰角为60°,已知点A,B,测角仪AF的高为1m,DE⊥AB于点C,求旗杆DE的高度.(结果精确到0.1m.≈1.73,cos27°≈0.89,tan27°≈0.51,sin27°≈0.45)20.某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:第一次第二次甲品牌耳机(个)2030乙品牌耳机(个)4050总费用(元)1080014600(1)甲、乙两种品牌耳机的进价各是多少元?(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价不超过35000元的情况下21.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点C在反比例函数的图象上,以点O为圆心.(1)求反比例函数的表达式;(2)阴影部分的面积为.(用含π的式子表示)22.某校举办“集体跳长绳”体育活动,若在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,以ED的中点O为原点建立平面直角坐标系(甲位于x轴的点E处,乙位于x轴的点D处),正在甩绳的甲、乙两名同学握绳的手分别设为A点,且AB的水平距离为4m,绳子甩到最高点C处时,最高点到地面的垂直距离为2m.(1)求出该抛物线的解析式;(2)如果身高为1.8m的小亮,站在ED之间,且与点E的距离为tm,可以通过他的头顶,请结合函数图象求出t的取值范围;(3)经测定,多人跳长绳且同方向站立时,脚跟之间的距离不小于0.4m才能安全跳绳,如果这4位同学与小亮身高相同,通过计算当绳子甩到最高处时23.综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断:如图1,在矩形ABCD中,点E为边AB的中点,使点A落在点F处,把纸片展平,并说明理由;(2)迁移思考:如图1,若AB=4,按照(1),当CG=2时,求AD的值;(3)拓展探索:如图2,四边形ABCD为平行四边形,其中∠A与∠C是对角,沿DE折叠,使点A落在点F处,延长DF与射线BC交于点G.若AD=2,CG=0.5

2024年河南省商丘市虞城县春来中学中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)实数﹣24的倒数是()A. B.24 C. D.﹣24【解答】解:实数﹣24的倒数是,故选:A.2.(3分)下列几何体的三视图都相同的是()A. B. C. D.【解答】解:求体的三视图都是相同的圆形,故选:D.3.(3分)2024年1月3日,我国自主研制的AG60E电动飞机首飞成功.AG60E的最大平飞速度为218km/h,航程1100000米()A.1.1×107 B.0.11×107 C.1.1×106 D.11×105【解答】解:1100000=1.1×103,故选:C.4.(3分)如图,先在纸上画两条直线a,b,使a∥b,使其直角顶点落在直线b上,若∠2=50°()A.30° B.40° C.50° D.60°【解答】解:∵∠2=50°,∴∠3=180°﹣90°﹣50°=40°,∵a∥b,∴∠6=∠3=40°.故选:B.5.(3分)分式化简后的结果为()A.﹣1 B.1 C. D.0【解答】解:原式=+==1,故选:B.6.(3分)如图,二次函数y=ax2+bx+c的图象与y轴交于点A(0,2),其对称轴是直线x=,则不等式ax2+bx+c≤2的解集是()A.x≤0 B.x≤﹣1或x≥2 C.0≤x≤1 D.x≤0或x≥1【解答】解:∵点A(0,2),∴点A关于对称轴对称的点的坐标为(1,7),∴二次函数y=ax2+bx+c的图象与直线y=2的交点坐标为(4,2),2),∴不等式ax6+bx+c≤2的解集是x≤0或x≥6.故选:D.7.(3分)在一个不透明的盒子中装有1个白球和2个黄球,每个球除颜色外,其他都相同.从中随机摸出1个球,再从中随机摸出1个球记下颜色,则两次摸到的球的颜色不同的概率是()A. B. C. D.【解答】解:列表如下:白黄黄白(白,黄)(白,黄)黄(黄,白)(黄,黄)黄(黄,白)(黄,黄)共有6种等可能的结果,其中两次摸到的球的颜色不同的结果有4种,∴两次摸到的球的颜色不同的概率为.故选:D.8.(3分)已知关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,则此方程的根是()A.x1=x2=5 B.x1=x2=2 C.x1=x2=1 D.x1=x2=﹣3【解答】解:因为关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,所以(﹣8)2﹣4(﹣5m+1)=0,解得m=5,所以此方程为x2﹣2x+5=0,解得x1=x5=1.故选:C.9.(3分)如图,把Rt△ABC放置在平面直角坐标系中,∠C=90°,点B的坐标为(0,2).将Rt△ABC绕点A逆时针旋转60°,则旋转前点C的坐标是()A. B. C. D.【解答】解:令△ABC旋转后的对应三角形为△AOB′,连接OC,则AB=AB′,AC=AO,所以△ACO和△ABB′都是等边三角形.因为AO⊥BB′,所以B′O=BO=2,所以BB′=4,所以AB=BB′=4.在Rt△AOB中,OA=,所以CO=OA=.过点C作OA的垂线,垂足为M,则OM=.在Rt△COM中,CM=.所以点C的坐标为().故选:C.10.(3分)如图,在矩形ABCD中,AB=6,且ED=6,M,N分别是边AB,P是线段CE上的动点,连接PM,使PM=PN.当PM+PN的值最小时,线段PC的长为()A.2 B. C.4 D.【解答】解:过点P作PG⊥CD于点G,交AB于点F,∵四边形ABCD是矩形,∴∠B=∠BCG=∠FGC=90°,CD=AB=6,∴四边形BCGF是矩形,∴FG=BC=8,∠PFB=∠B=∠PHB=90°,∴四边形BHPF是矩形,PF⊥AB,∵ED=4,∴ED=CD,∴∠DCE=∠DEC=45°,∴∠BCE=90﹣45°=45°=∠DCE,∴CE平分∠BCD,∴PH=PG,四边形CHPG是正方形,∴PH=CH,∵PM≥PF,PN≥PH,∴PM+PN≥PF+PH,∴PM+PN≥PF+PG,∵PF+PG=FG=8,∴PM+PN≥8,∴当PM与PF重合且PN与PH重合时,PM+PN取得最小值2,∵BM=BN,∴当PM与PF重合且PN与PH重合时,则BF=BH,∴BH=PF=PH=PG=CH=FG=,∴PC==4.故选:D.二、填空题(每小题3分,共15分)11.(3分)如果有意义,那么x的取值范围是x≤1.【解答】解:由题意得:﹣x+1≥0,解得:x≤5,故答案为:x≤1.12.(3分)不等式组的解集为x<﹣1.【解答】解:由3﹣x>0得:x<7,由2x<﹣x﹣3得:x<﹣7,则不等式组的解集为x<﹣1,故答案为:x<﹣1.13.(3分)某市举办了“演说中国”青少年演讲比赛,其中综合荣誉分占30%,现场演讲分占70%,则小明的最终成绩为83分.【解答】解:小明的最终比赛成绩为:90×30%+80×70%=27+56=83(分),故答案为:83.14.(3分)如图,把矩形OABC放在平面直角坐标系中,O(0,0),A(4,0),C(0,3),点P在边OC上,C重合;点Q在边OA上,A重合,AQ=2OP,QB,PB.当点Q的坐标为(,0)时,PQ⊥BQ.【解答】解:∵四边形ABCD是矩形,O(0,A(4,C(6,∴OA=4,AB=OC=3,若PQ⊥BQ,∴∠PQB=90°=∠COA=∠BAO,∴∠OPQ+∠OQP=90°=∠OQP+∠BQA,∴∠OPQ=∠AQB,∴△POQ∽△QAB,∴,∵AQ=3OP,∴,∴OQ=,∴点Q(,0),∴当点Q(,0)时,故答案为:(,0).15.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,斜边AB是半圆O的直径,连接CD与AB交于点E,若△BCE是等腰三角形80°或140°.【解答】解:如图1中,当BE=BC时,∵BE=BC,∠EBC=40°,∴∠BCE=∠BEC=×(180°﹣40°)=70°,∵弧BD=弧BD,∴∠BOD=2∠BCE=140°;如图2中,当EB=EC时,∵BE=EC,∴∠EBC=∠BCD=40°,∴∠BOD=7∠BCD=80°;故答案为:80°或140°.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:(3x+2y)(3x﹣2y)﹣2y(2﹣2y).【解答】解:(1)=3﹣4+8=0;(2)(3x+2y)(3x﹣2y)﹣4y(2﹣2y)=6x2﹣4y5﹣4y+4y7=9x2﹣7y.17.(80分)为引导学生广泛阅读文学名著,某校在七、八年级开展了以“走进名著,诵读经典”为主题的知识竞赛活动.学生竞赛成绩分为A,B,C,分别是A:0≤x<70,B:70≤x<80,D:90≤x≤100.现从七、八年级参加竞赛的学生中各随机选出20名学生的成绩整理如下:七年级学生的竞赛成绩为:82,70,86,99,86,88,84,81,91,98,93,58,81,83;八年级中等级为C的学生成绩为:89,87,85,84,84学生平均数中位数众数方差七年级8586b86八年级85a9180.76根据以上信息,解答下列问题:(1)根据表格写出a=86,b=86,m=40;(2)根据以上数据,你认为在此次知识竞赛活动中,哪个年级的成绩更好?请说明理由(一条即可);(3)若七、八年级各有1000名学生参赛,请估计两个年级参赛学生中成绩为一般(小于80分)的学生人数.【解答】解:(1)由题意可知,把八年级20名学生的成绩从小到大排列,87;七年级0名学生的成绩中86出现次数最多,故众数b=86;m%=1﹣10%﹣15%﹣3÷20=40%,故m=40.故答案为:86,86;(2)八年级的成绩更好,因为两个年级的平均数和中位数都相同.(答案合理即可)(3)(名).答:估计两个年级参赛学生中成绩为一般(小于80分)的学生共有400名.18.如图,在△ABC中,∠B=30°,作线段AB的垂直平分线,交BC于点D(1)依题意补全图形;(要求:尺规作图,保留作图痕迹,不写作法)(2)求证:CD=BD.【解答】(1)解:如图所示.(2)证明:连接AD,由(1)知,DE是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B=30°.∵∠C=90°,∴∠BAC=60°,∴∠DAC=30°.在Rt△ACD中,∠DAC=30°,∴.19.如图,为了测量国旗台上旗杆DE的高度,小华在点A处利用测角仪测得旗杆底部D的仰角为27°,此时利用测角仪测得旗杆顶部E的仰角为60°,已知点A,B,测角仪AF的高为1m,DE⊥AB于点C,求旗杆DE的高度.(结果精确到0.1m.≈1.73,cos27°≈0.89,tan27°≈0.51,sin27°≈0.45)【解答】解:如图,延长FN交EC于点M,由题意得,AF=BN=CM=1m,AB=FN=0.7m,则DM=DC﹣CM=2m,设DE=xm,则EM=(x+2)m,在Rt△EMN中,∠FNM=60°,∵tan∠FNM=,∴MN===,在Rt△FDM中,FM==,由FN=FM﹣MN,得5.92﹣,解得:x≈3.9,答:旗杆DE的高度约为4.9m.20.某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:第一次第二次甲品牌耳机(个)2030乙品牌耳机(个)4050总费用(元)1080014600(1)甲、乙两种品牌耳机的进价各是多少元?(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价不超过35000元的情况下【解答】解:(1)设甲品牌耳机的进价是x元,乙品牌耳机的进价是y元,根据题意得:,即,解得:.答:甲品牌耳机的进价是220元,乙品牌耳机的进价是160元;(2)设第三次购进m个甲品牌耳机,则购进(200﹣m)个乙品牌耳机,根据题意得:,解得:30≤m≤50,∴m的最大值为50.答:最多能购进50个甲品牌耳机.21.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点C在反比例函数的图象上,以点O为圆心.(1)求反比例函数的表达式;(2)阴影部分的面积为.(用含π的式子表示)【解答】解:(1)如图,过点B,CE垂直于x轴于点D,E.∵点B的坐标为,∴OD=6,.∵四边形OABC是菱形,∴AB=OA=OC=CB,CB∥OA.设AB=OA=x,则AD=6﹣x,在Rt△ABD中,由勾股定理得:AD2+BD4=AB2,即.解得x=4.∴AB=OA=OC=CB=3,AD=2.在Rt△COE与Rt△BAD中,,∴Rt△COE≌Rt△BAD(HL).∴OE=AD=2.∵,∴.∴.设反比例函数的表达式为,将C点代入,得,∴;(2)由点C的坐标得,tan∠COE=,则∠COE=60°,则阴影部分的面积=S菱形OABC﹣S扇形OCA=AO×CE﹣×π×AO2=4×3﹣×π×16=,故答案为:.22.某校举办“集体跳长绳”体育活动,若在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,以ED的中点O为原点建立平面直角坐标系(甲位于x轴的点E处,乙位于x轴的点D处),正在甩绳的甲、乙两名同学握绳的手分别设为A点,且AB的水平距离为4m,绳子甩到最高点C处时,最高点到地面的垂直距离为2m.(1)求出该抛物线的解析式;(2)如果身高为1.8m的小亮,站在ED之间,且与点E的距离为tm,可以通过他的头顶,请结合函数图象求出t的取值范围;(3)经测定,多人跳长绳且同方向站立时,脚跟之间的距离不小于0.4m才能安全跳绳,如果这4位同学与小亮身高相同,通过计算当绳子甩到最高处时【解答】解:(1)由题意可设抛物线的解析式为y=ax2+2,将点B(5,1.2)代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论