版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
想要理解和研究机器学习,首先你应该要掌握Python或者R,都是和C,Java,PHP差不多的语言(译:差太多了好吧).不过呢,Python和R都是比较年轻(译:不懂,Python可并不年轻吧),而且呢更高级,完全不用理解底层(译:?),所以他俩都很容易学.Python更牛逼的地方在于她能够处理更多的问题,比如,机器学习,算法,图像等,而不像R只能是进行数据处理和分析.Python有着更广泛的应用领域,比如后端框架Django(译:原文是,'Hostingwebsites:Jango'),自然语言处理(译:原文是,'naturallanguageproecssing',作者太不认真,NLP),网站接入等,而且Python更像C语言(译:扯淡),所以她现在很流行.毛子的原文里面有不少错误,我以自己的理解加以修正,仅供参考.语法文法错误我就直接修改,原文作者的表达内容错误会依据原文不变,在()内说明.新手用Python进行机器学习的四个步骤Python基础知识学习,有书,Mooc,视频.处理数据,你得了解一些模块,如:Pandas,Numpy,Matplotlib和NaturalLanguageProcessing.接着你就得爬取数据,可以通过API,也可以直接到网站上去爬取.网站爬虫模块:BeautifulSoup(译:应该是Scrapy,BS是HTML/XML解析器).我们用拿到的数据来训练算法.最后一步,就是要学习ML的相关算法,以及工具Scikit-learn.1.学习Python学习Python最简单粗暴的法子就是到Codecademy上去注册个账号来学习基础知识.一个被好多码农推荐的很经典的网站LearnPythonTheHardWay.ByteofPython这篇文章是非常值得去学习的.Python社区还为新手给出了一个Python学习资源列表.O’Reilley出版的一本书ThinkPython,这里可以免费下载.最后还有一个IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也讲了好多Python的基础知识.2.导入模块做机器学习很重要的几个模块和工具是NumPy,Pandas,Matplotlib和IPython.DataAnalysiswithOpenSourceTools这本书里面都有涉及这些内容.上面提到的IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也涵盖了这些东西.还有一本书PythonforDataAnalysis:DataWranglingwithPandas,NumPy,andIPython.下面还有一些免费的资源:10minutestoPandasPandasformachinelearning100NumPyexercises3.爬取挖掘数据一旦你掌握了Python的基础,下面就要学会怎么去爬取数据.也就是网页爬虫.像Twitter和LinkedIn这些网站都给出了APIs接口,让我们去获得文本数据.关于这方面下面有几本书不错的书:MiningtheSocialWeb(免费),WebScrapingwithPython和WebScrapingwithPython:CollectingDatafromtheModernWeb.最后这些文本数据要由NLP技术处理成数值化数据:NaturallanguageprocessingwithPython.图像和视频要用图像处理CV,下面有几个不错的资源:ProgrammingComputerVisionwithPython(免费),ProgrammingComputerVisionwithPython:Toolsandalgorithmsforanalyzingimages和PracticalPythonandOpenCV.Python爬虫的一些例子:Mini-Tutorial:SavingTweetstoaDatabasewithPythonWebScrapingIndeedforKeyDataScienceJobSkillsCaseStudy:SentimentAnalysisOnMovieReviewsFirstWebScraperSentimentAnalysisofEmailsSimpleTextClassificationBasicSentimentAnalysiswithPythonTwittersentimentanalysisusingPythonandNLTKSecondTry:SentimentAnalysisinPythonNaturalLanguageProcessinginaKaggleCompetitionforMovieReviews4.机器学习机器学习可以分为四部分:分类,聚类,回归和降维.MachinelearninginPythonScikit-learn官网上有很多指南,下面列一些其它的:IntroductiontoMachineLearningwithPythonandScikit-LearnDataScienceinPythonMachineLearningforPredictingBadLoansAGenericArchitectureforTextClassificationwithMachineLearningUsingPythonandAItopredicttypesofwineAdviceforapplyingMachineLearningPredictingcustomerchurnwithscikit-learnMappingYourMusicCollectionDataScienceinPythonCaseStudy:SentimentAnalysisonMovieReviewsDocumentClusteringwithPythonFivemostpopularsimilaritymeasuresimplementationinpythonCaseStudy:SentimentAnalysisonMovieReviewsWillitPython?TextProcessinginMachineLearningHackinganepicNHLgoalcelebrationwithahuelightshowandreal-timemachinelearningVancouverRoomPricesExploringandPredictingUniversityFacultySalariesPredictingAirlineDelays书:CollectionofbooksonredditBuildingMachineLearningSystemswithPythonBuildingMachineLearningSystemswithPython,2ndEditionLearningscikit-learn:MachineLearninginPythonMachineLearningAlgorithmicPerspectiveDataSciencefromScratch–FirstPrincipleswithPythonMachineLearninginPython机器学习相关的Blog和课程在线课程:Collectionoflinks.MOOC:machinelearning和DataAnalystNanodegree.
这里是一些Blog.机器学习理论TheElementsofstatisticalLearningIntroductiontoStatisticalLearning书:IntroductiontomachinelearningACourseinMachineLearning.还有一些Watch15hourstheoryofmachinelearning!越看越懒得翻,着实没什么营养,索性直接列出资源.下面是美国麻省理工学院(MIT)博士林达华老师(ML大牛)推荐的书单.MachineLearningPatternRecognitionandMachineLearningByChristopherM.Bishop
Anewtreatmentofclassicmachinelearningtopics,suchasclassification,regression,andtimeseriesanalysisfromaBayesianperspective.ItisamustreadforpeoplewhointendstoperformresearchonBayesianlearningandprobabilisticinference.GraphicalModels,ExponentialFamilies,andVariationalInferenceByMartinJ.WainwrightandMichaelI.Jordan
Itisacomprehensiveandbrilliantpresentationofthreecloselyrelatedsubjects:graphicalmodels,exponentialfamilies,andvariationalinference.ThisisthebestmanuscriptthatIhaveeverreadonthissubject.Stronglyrecommendedtoeveryoneinterestedingraphicalmodels.Theconnectionsbetweenvariousinferencealgorithmsandconvexoptimizationisclearlyexplained.Note:pdfversionofthisbookisfreelyavailableonline.BigData:ARevolutionThatWillTransformHowWeLive,Work,andThinkViktorMayer-Schonberger,andKennethCukier
Ashortbutinsightfulmanuscriptthatwillmotivateyoutorethinkhowweshouldfacetheexplosivegrowthofdatainthenewcentury.StatisticalPatternRecognition(2nd/3rdEdition)ByAndrewR.Webb,andKeithD.Copsey
Awellwrittenbookonpatternrecognitionforbeginners.Itcoversbasictopicsinthisfield,includingdiscriminantanalysis,decisiontrees,featureselection,andclustering--allarebasicknowledgethatresearchersinmachinelearningorpatternrecognitionshouldunderstand.LearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyondByBernhardSchlkopfandAlexanderJ.Smola
Acomprehensiveandin-depthtreatmentofkernelmethodsandsupportvectormachine.Itnotonlyclearlydevelopsthemathematicalfoundation,namelythereproducingkernelHilbertspace,butalsogivesalotofpracticalguidance(e.g.howtochooseordesignkernels.)MathematicsTopology(2ndEdition)ByJamesMunkres
Aclassicontopologyforbeginners.Itprovidesaclearintroductionofimportantconceptsingeneraltopology,suchascontinuity,connectedness,compactness,andmetricspaces,whicharethefundamentalsthatyouhavetograspedbeforeembarkingonmoreadvancedsubjectssuchasrealanalysis.IntroductoryFunctionalAnalysiswithApplicationsByErwinKreyszig
ItisaverywellwrittenbookonfunctionalanalysisthatIwouldliketorecommendtoeveryonewhowouldliketostudythissubjectforthefirsttime.Startingfromsimplenotionssuchasmetricsandnorms,thebookgraduallyunfoldsthebeautyoffunctionalanalysis,exposingimportanttopicsincludingBanachspaces,Hilbertspaces,andspectraltheorywithareasonabledepthandbreadth.Mostimportantconceptsneededinmachinelearningarecoveredbythisbook.Theexercisesareofgreathelptoreinforceyourunderstanding.RealAnalysisandProbability(CambridgeStudiesinAdvancedMathematics)ByR.M.Dudley
ThisisadensetextthatcombinesRealanalysisandmodernprobabilitytheoryin500+pages.WhatIlikeaboutthisbookisitstreatmentthatemphasizestheinterplaybetweenrealanalysisandprobabilitytheory.Alsotheexpositionofmeasuretheorybasedonsemi-ringsgivesadeepinsightofthealgebraicstructureofmeasures.ConvexOptimizationByStephenBoyd,andLievenVandenberghe
Aclassiconconvexoptimization.EveryonethatIknewwhohadreadthisbooklikedit.Thepresentationstyleisverycomfortableandinspiring,anditassumesonlyminimalprerequisiteonlinearalgebraandcalculus.Stronglyrecommendedforanybeginnersonoptimization.Note:thepdfofthisbookisfreelyavailableontheProf.Boyd'swebsite.NonlinearProgramming(2ndEdition)ByDimitriP.Bersekas
Athoroughtreatmentofnonlinearoptimization.Itcoversgradient-basedtechniques,Lagrangemultipliertheory,andconvexprogramming.PartofthisbookoverlapswithBoyd's.Overall,itgoesdeeperandtakesmoreeffortstoread.IntroductiontoSmoothManifoldsByJohnM.Lee
ThisisthebookthatIusedtolearndifferentialgeometryandLiegrouptheory.Itprovidesadetailedintroductiontobasicsofmoderndifferentialgeometry--manifolds,tangentspaces,andvectorbundles.TheconnectionsbetweenmanifoldtheoryandLiegrouptheoryisalsoclearlyexplained.ItalsocoversDeRhamCohomologyandLiealgebra,whereaudienceisinvitedtodiscoverthebeautybylinkinggeometrywithalgebra.ModernGraphTheoryByBelaBollobas
Itisamoderntreatmentofthisclassicaltheory,whichemphasizestheconnectionswithothermathematicalsubjects--forexample,randomwalksandelectricalnetworks.Ifoundsomemessagesconveyedbythisbookisenlighteningformyresearchonmachinelearningmethods.ProbabilityTheory:AComprehensiveCourse(Universitext)ByAchimKlenke
Thisisacompletecoverageofmodernprobabilitytheory--notonlyincludingtraditionaltopics,suchasmeasuretheory,independence,andconvergencetheorems,butalsointroducingtopicsthataretypicallyintextbooksonstochasticprocesses,suchasMartingales,Markovchains,andBrownianmotion,Poissonprocesses,andStochasticdifferentialequations.Itisrecommendedasthemaintextbookonprobabilitytheory.AFirstCourseinStochasticProcesses(2ndEdition)BySamuelKarlin,andHowardM.Taylor
AclassictextbookonstochasticprocesswhichIthinkareparticularlysuitableforbeginnerswithoutmuchbackgroundonmeasuretheory.Itprovidesacompletecoverageofmanyimportantstochasticprocessesinanintuitiveway.ItsdevelopmentofMarkovprocessesandrenewalprocessesisenlightening.PoissonProcesses(OxfordStudiesinProbability)ByJ.F.C.Kingman
IfyouareinterestedinBayesiannonparametrics,thisisthebookthatyoushoulddefinitelycheckout.Thismanuscriptprovidesanunparalleledintroductiontorandompointprocesses,includingPoissonandCoxprocesses,andtheirdeeptheoreticalconnectionswithcompleterandomness.ProgrammingStructureandInterpretationofComputerPrograms(2ndEdition)ByHaroldAbelson,GeraldJaySussman,andJulieSussman
Timelessclassicthatmustbereadbyallcomputersciencemajors.WhilesometopicsandtheuseofSchemeastheteachinglanguageseemsoddatfirstglance,thepresentationoffundamentalconceptssuchasabstraction,recursion,andmodularityissobeautifulandinsightfulthatyouwouldneverexperiencedelsewhere.ThinkinginC++:IntroductiontoStandardC++(2ndEdition)ByBruceEckel
Whileitiskindofold(writtenin2000),IstillrecommendthisbooktoallbeginnerstolearnC++.Thethoughtsunderlyingobject-orientedprogrammingisveryclearlyexplained.ItalsoprovidesacomprehensivecoverageofC++inawell-tunedpace.EffectiveC++:55SpecificWaystoImproveYourProgramsandDesigns(3rdEdition)ByScottMeyers
TheEffectiveC++seriesbyScottMeyersisamustforanyonewhoisseriousaboutC++programming.Theitems(rules)listedinthisbookconveystheauthor'sdeepunderstandingofbothC++itselfandmodernsoftwareengineeringprinciples.ThiseditionreflectslatestupdatesinC++development,includinggenericprogrammingtheuseofTR1library.AdvancedC++MetaprogrammingByDavideDiGennaro
Likeitorhateit,meta-programminghasplayedanincreasinglyimportantroleinmodernC++development.IfyouaskedwhatisthekeyaspectsthatdistinguishesC++fromallotherlanguages,IwouldsayitistheunparalleledgenericprogrammingcapabilitybasedonC++templates.Thisbooksummarizesthelatestadvancementofmetaprogramminginthepastdecade.IbelieveitwilltaketheplaceofLoki's"ModernC++Design"tobecomethebibleforC++meta-programming.IntroductiontoAlgorithms(2nd/3rdEdition)ByThomasH.Cormen,CharlesE.Leiserson,RonaldL.Rivest,andCliffordStein
Ifyouknownothingaboutalgorithms,youneverunderstandcomputerscience.Thisisbookisdefinitelyaclassiconalgorithmsanddatastructuresthateveryonewhoisseriousaboutcomputersciencemustread.Thiscontentsofthisbookrangesfromelementarytopicssuchasclassicsortingalgorithmsandhashtabletoadvancedtopicssuchasmaximumflow,linearprogramming,andcomputationalgeometry.Itisabookforeveryone.EverytimeIreadit,Ilearnedsomethingnew.DesignPatterns:ElementsofReusableObject-OrientedSoftwareByErichGamma,RichardHelm,RalphJohnson,andJohnVlissides
TextbooksonC++,Java,orotherlanguagestypicallyusetoyexamples(animals,students,etc)toillustratetheconceptofOOP.Thisway,however,doesnotreflectthefullstrengthofobjectorientedprogramming.Thisbook,whichhasbeenwidelyacknowledgedasaclassicinsoftwareengineering,showsyou,viacompellingexamplesdistilledfromrealworldprojects,howspecificOOPpatternscanvastlyimproveyourcode'sreusability
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮革漂白制剂市场发展前景分析及供需格局研究预测报告
- 手动螺旋切菜器产品供应链分析
- 多媒体图书馆服务行业营销策略方案
- 发行预付费电话卡行业相关项目经营管理报告
- 修脚时穿的泡沫拖鞋产业链招商引资的调研报告
- 扩音器用变送器产业链招商引资的调研报告
- 3.2遵守规则 同步课件 -2024-2025学年统编版道德与法治八年级上册
- 自动驾驶送货机器人项目营销计划书
- 广告咨询行业相关项目经营管理报告
- 创建设计和维护网站行业经营分析报告
- 辽宁省抚顺市2024-2025学年人教版八年级上册数学期中模拟试题(含答案)
- GB/T 19609-2024卷烟用常规分析用吸烟机测定总粒相物和焦油
- (高清版)DB34∕T 1146-2010 保温装饰一体板外墙外保温系统
- 雕梁画栋 课件 2024-2025学年人美版(2024)初中美术七年级上册
- 部编版小学语文六年级上册第六单元整体解读与教学规划
- 人教版物理九年级全一册17.2欧姆定律 教学设计
- 期中模拟练习(试题)-2024-2025学年苏教版二年级上册数学
- 2024年内蒙古呼和浩特市中考英语试卷真题(含答案解析)
- 2024零售行业消费趋势洞察报告
- 2024-2030年中国酒类电子商务行业盈利模式分析与发展潜力评估研究报告
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
评论
0/150
提交评论