简述大体积混凝土温度控制措施_第1页
简述大体积混凝土温度控制措施_第2页
简述大体积混凝土温度控制措施_第3页
简述大体积混凝土温度控制措施_第4页
简述大体积混凝土温度控制措施_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大体积混凝土温度控制措施摘要:在大体积混凝土工程中,为了防止温度裂缝的产生或把裂缝控制在某个界限内,必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展,大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点,在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外,还必须控制温度变形裂缝的开展,保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展,是大体积混凝土设计和施工中的一个重要课题。大体积混凝土的温度裂缝的产生原因大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。1、水泥水化热在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3d~5d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力(一般是拉应力)超过混凝土当时的抗拉强度时,就会形成表面裂缝2、外界气温变化大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施针对大体积混凝土温度裂缝成因,可从以下几方面制定温控防裂措施。一、温度控制标准混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。二、混凝土的配置及原料的选择1、使用水化热低的水泥由于矿物成分及掺合料数量不同,水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的,水化热较高,掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法,确保混凝土搅拌时水泥温度尽可能较低。2、使用微膨胀水泥使用微膨胀水泥的目的是在混凝土降温收缩时膨胀,补偿收缩,防止裂缝。但目前使用的微膨胀水泥,大多膨胀过早,即混凝土升温时膨胀,降温时已膨胀完毕,也开始收缩,只能使升温的压应力稍有增大,补偿收缩的作用不大。所以应该使用后膨胀的微膨胀水泥。3、控制砂、石的含泥量严格控制砂的含泥量使之不大于3%;石子的含泥量,使之不大于1%,精心设计、选择混凝土成分配合如尽可能采用粒径较大、质量优良、级配良好的石子。粒径越大、级配良好,骨料的孔隙率和表面积越小,用水量减少,水泥用量也少。在选择细骨料时,其细度模数宜在26~29。工程实践证明,采用平均粒径较大的中粗砂,比采用细砂每方混凝土中可减少用水量20~25kg,水泥相应减少28~35kg,从而降低混凝土的干缩,减少水化热,对混凝上的裂缝控制有重要作用。4、采用线胀系数小的骨料混凝土由水泥浆和骨料组成,其线胀系数为水泥浆和骨料线胀系数的加权(占混凝土的体积)平均值。骨料的线胀系数因母岩种类而异。不同岩石的线胀系数差异很大。大体积混凝土中的骨料体积占75%以上,采用线胀系数小的骨料对降低混凝土的线胀系数,从而减小温度变形的作用是十分显著的。5、外掺料选择水泥水化热是大体积混凝土发生温度变化而导致体积变化的主要根源。干湿和化学变化也会造成体积变化,但通常都远远小于水泥水化热产生的体积变化。因此,除采用水化热低的水泥外,要减小温度变形,还应千方百计地降低水泥用量,减少水的用量。根据试验每减少10kg水泥,其水化热将使混凝土的温度相应升降1℃。这就要求:(1)在满足结构安全的前提,尽量降低设计要求强度。(2)众所周知,强度越低,水泥用量越小。充分利用混凝土后期强度,采用较长的设计龄期混凝土的强度,特别是掺加活性混合材(矿渣、粉煤灰)的。大体积混凝土因工程量大,施工时间长,有条件采用较长的设计龄期,如90d、180d等。折算成常规龄期28d的设计强度就可降低,从而减小水泥用量。(3)掺加粉煤灰:粉煤灰的水化热远小于水泥,7d约为水泥1/3,28d约为水泥的1/20掺加粉煤灰减小水泥用量可有效降低水化热。大体积混凝土的强度通常要求较低,允许参加较多的粉煤灰。另外,优质粉煤灰的需水性小,有减水作用,可降低混凝土的单位用水量和水泥用量;还可减小混凝土的自身体积收缩,有的还略有膨胀,有利于防裂。掺粉煤灰还能抑制碱骨料反应并防止因此产生的裂缝。(4)掺减水剂:掺减水剂可有效地降低混凝土的单位用水量,从而降低水泥用量。缓凝型减水剂还有抑制水泥水化作用,可降低水化温升,有利于防裂。大体积混凝土中掺加的减水剂主要是木质素磺酸钙,它对水泥颗粒有明显的分散效应,可有效地增加混凝土拌合物的流动性,且能使水泥水化较充分,提高混凝土的强度。若保持混凝土的强度不变,可节约水泥10%。从而可降低水化热,同时可明显延缓水化热释放速度,热峰也相应推迟。三、混凝土浇筑温度的控制降低混凝土的浇筑温度对控制混凝土裂缝非常重要。相同混凝土,入模温度高的温升值要比入模温度低的大许多。混凝土的入模温度应视气温而调整。在炎热气候下不应超过28℃,冬季不应低于5℃。在混凝土浇筑之前,通过测量水泥、粉煤灰、砂、石、水的温度,可以估算浇筑温度。若浇筑温度不在控制要求内,则应采取相措施。1、在高温季节、高温时段浇筑的措施(1)除水泥水化温升外,混凝土本身的温度也是造成体积变化的原因,有条件的应尽量避免所以利用理论公式进行提前预测和计算以及因此而积极地采取主动温度控制措施就显得尤为重要。参考文献:[1]西北勘测设计研究院SL/T191-96水工混凝土结构设计规范[S]北京:中国水利水电出版社,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论