版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4-1.5充分条件与必要条件
全称量词与存在量词第一章集合与常用逻辑用语 一、知识框图:(课前自主学习)常用逻辑用语充分条件必要条件充要条件全称量词存在量词全称量词和存在量词的否定二、知识回顾:命题(初中内容):(1)定义:用语言、符合或式子表达的,可以判断真假的陈述句,其
中判断为真的语句叫真命题,判断为假的语句叫假命题三、概念解读:1.充分条件:2.必要条件:
3.充要条件:4.全称量词:5.存在量词:“所有的”“任意的”“一切”“每一个”“存在一个”“至少有一个”“有些”“某些”“有的”6.全称量词和存在量词的否定:
例1、判断P是q的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)四、回归教材:必要不充分条件充分不必要条件例1、判断P是q的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)四、回归教材:充要条件即不充分也不必要条件(5)p:两三角形三边成比例。q:两三角形相似。(6)p:两三角形两角分别相等。q:两三角形相似。(7)p:两三角形两边成比例且夹角相等。q:两三角形相似。充要条件充要条件充要条件四、回归教材:(8)p:圆C内两条弦相等,q:圆C内两条弦所对的圆周角相等或互补(9)在平面中,p:四边形对角线相等,q:四边形是菱形。(10)在平面中,p:四边形对角线互相平分,q:四边形是平行四边形。充要条件充要条件必要不充分条件四、回归教材:例2:东施效颦中“病中美人惹人怜惜”病中美人是惹人怜惜的
.(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)
充分不必要条件四、回归教材:
必要不充分条件四、回归教材:必要不充分条件四、回归教材:练习2:俗话说“有志者,事竟成”事竟成是有志者的
.(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)
例3:写出下列命题的否定、并判断命题及命题的否定的真假。1)有些四边形是矩形2)三角形不都是中心对称图形原命题:真命题命题的否定:所有的四边形都不是矩形,假命题原命题:真命题命题的否定:所有的三角形都是中心对称图形,假命题四、回归教材:例3,写出下列命题的否定、并判断命题及命题的否定的真假。3)一元二次方程不总有实数根4)每个二次函数的图象都是轴对称图形原命题:真命题命题的否定:所有的一元二次方程总有实数根,假命题原命题:真命题命题的否定:有一些二次函数的图象不是轴对称图形,假命题四、回归教材:原命题:真命题命题的否定:存在一些正方形不是菱形,假命题四、回归教材:例3:写出下列命题的否定、并判断命题及命题的否定的真假。5)正方形都是菱形
原命题:真命题命题的否定:
四、回归教材:例3:写出下列命题的否定、并判断命题及命题的否定的真假。
8)每一个素数都是奇数原命题:假命题命题的否定:
原命题:假命题命题的否定:存在一个素数不是奇数,真命题例4:根据下述事实,猜想一个关于n的式子,并写出含有量词的全称量词命题或存在量词命题四、回归教材:
四、回归教材:
例5:观察下图:p:开关A闭合,q:灯亮1)、图①中,P是q的
.(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)2)、图②中,P是q的
.(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)四、教材升华:充分不必要条件必要不充分条件
四、教材升华:
四、教材升华:
四、教材升华:四、作业:
(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)
(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)四、作业:
1.充分条件:2.必要条件:
3.充要条件:4.全称量词:5.存在量词
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧房转让协议书
- 2024年度二手房产租赁维修合同3篇
- Unit3DatesMoreReadingandWriting(课件)粤人版英语五年级上册
- 二零二四年度人工智能教育平台合作开发合同
- 供货服务合同
- 苗木供需协议书2024年定制
- 失语症的治疗
- 2024年度战略合作协议服务内容扩展
- 铝材质量检测与评估合同(2024版)
- 手术室感控知识培训内容
- 2022年北京城市副中心投资建设集团有限公司校园招聘笔试试题及答案解析
- 小学语文人教六年级上册《月光曲》-课件
- 公诉书格式范文(推荐十八篇)
- 椿林麻辣烫食品安全管理制度
- 老年人能力评定总表(含老年人日常生活活动能力、精神状态与社会参与能力、感知觉与沟通能力、老年综合征罹患情况)
- 《雪落在中国的土地上》课件(57张)
- 旅行社团队确认书
- Python入门基础教程全套课件
- 大学计算机基础实践教程实践心得
- 正大集团标准化养猪及“四良配套”技术介绍课件
- 《语言学纲要》修订版课后练习题
评论
0/150
提交评论