版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省邯郸市复兴区达标名校十校联考最后数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A. B. C. D.2.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.(12)2016B.(12)2017C.(33)2016D.(3.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.有一个实数根 D.无实数根4.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是()A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点5.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣76.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)7.一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.8.人的大脑每天能记录大约8600万条信息,数据8600用科学记数法表示为()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1029.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A. B.2 C. D.310.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.∶2 D.∶3二、填空题(共7小题,每小题3分,满分21分)11.若从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.12.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.13.因式分解:2x14.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.15.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.16.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.17.因式分解:.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.19.(5分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.20.(8分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.21.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数:,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算:某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.22.(10分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.23.(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.24.(14分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴,,∴选项A、C错误,选项D正确,选项B错误,故选D.2、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.3、B【解析】一元二次方程的根的情况与根的判别式有关,,方程有两个不相等的实数根,故选B4、D【解析】
根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.5、B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.6、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.7、B【解析】
根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.8、C【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9、A【解析】
设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.【详解】设AC=a,则BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.10、A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF与△ABC的面积之比等于:故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.二、填空题(共7小题,每小题3分,满分21分)11、【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.12、20π【解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8π,由勾股定理得,母线长==5,故圆锥的侧面积=×8π×5=20π,故答案为:20π.【点睛】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.13、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.14、12【解析】
由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.【详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.15、50°.【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.16、m≤1【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【详解】解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案为:m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.17、;【解析】
根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x2﹣x﹣12=(x﹣4)(x+3).故答案为(x﹣4)(x+3).三、解答题(共7小题,满分69分)18、(1)∠ADE=90°;(2)△ABE的周长=1.【解析】试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长19、1.【解析】
根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.【详解】解:====当x=2时,原式==1.【点睛】本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.20、(1)﹣10;(2)∠EFC=72°.【解析】
(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.21、(1)3;(2);(3)【解析】
设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.参照题目中的解题方法进行计算即可.由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值【详解】设塔的顶层共有盏灯,由题意得.解得,顶层共有盏灯.设,,即:.即由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n项,根据等比数列前n项和公式,求得每项和分别为:每项含有的项数为:1,2,3,…,n,总共的项数为所有项数的和为由题意可知:为2的整数幂,只需将−2−n消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有,不满足N>10,②1+2+4+(−2−n)=0,解得:n=5,总共有满足,③1+2+4+8+(−2−n)=0,解得:n=13,总共有满足,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有不满足,∴【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.22、(1)y=﹣x2+2x+1;(2)P(,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】
(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程为y=P点满足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.23、(1)△ABC是“等高底”三角形;(1);(3)CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳中的安全意识个人防溺水决心书
- 烈酒代理销售合同
- 旅行社旅游服务合同的售后服务
- 2024劳务派遣合同范本简单
- 2024承包停车场合同范文
- 森林改培的社会参与和合作机制考核试卷
- 房屋防震维修合同范例
- 牛肉产品购销合同模板
- 歌曲录制制作合同模板
- 物流公司调度合同范例
- 人教统编版高中语文必修下册第八单元(单元总结)
- 钻井地质设计
- 动作分析-动素分析
- 教育局长在高中教学工作会议上讲话稿:推动高中教学工作快速优质发展
- 购买食物需要注意--完整课件PPT
- 政治经济学计算题
- 2022年国家电网招聘(其他工学类)考试题库(真题导出版)
- 小学教学常规检查表
- 商业空间设计课件PPT
- 个人财务管理系统的设计与实现--论文
- 小学六年级英语上册《Unit 1 How can I get there》教案
评论
0/150
提交评论