版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022届福建省重点达标名校中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.= B.=C.= D.=2.如图,中,E是BC的中点,设,那么向量用向量表示为()A. B. C. D.3.﹣的绝对值是()A.﹣ B.﹣ C. D.4.菱形的两条对角线长分别是6cm和8cm,则它的面积是()A.6cm2 B.12cm2 C.24cm2 D.48cm25.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A. B. C. D.6.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A. B. C. D.7.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为()A. B. C. D.8.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.89.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.410.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E11.已知a=(+1)2,估计a的值在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间12.-5的倒数是A. B.5 C.- D.-5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=_____.14.按照一定规律排列依次为,…..按此规律,这列数中的第100个数是_____.15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.16.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.17.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.18.分解因式:a3b+2a2b2+ab3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.(1)如图1,若△ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1.求的值.20.(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.21.(6分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.(1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.22.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.23.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.24.(10分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.25.(10分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.26.(12分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?27.(12分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等即可列方程.【详解】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等可得=.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.2、A【解析】
根据,只要求出即可解决问题.【详解】解:四边形ABCD是平行四边形,,,,,,,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.3、C【解析】
根据负数的绝对值是它的相反数,可得答案.【详解】│-│=,A错误;│-│=,B错误;││=,D错误;││=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.4、C【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【详解】根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=14cm1.故选:C.【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.5、B【解析】
根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6、B【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.7、D【解析】
先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),
∴点M到x轴的距离是3,到y轴的距离是4,
∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
∴r的取值范围是3<r<4,
故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.8、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.9、D【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.10、C【解析】
根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.11、D【解析】
首先计算平方,然后再确定的范围,进而可得4+的范围.【详解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.12、C【解析】
若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
先由根与系数的关系求出m•n及m+n的值,再把化为的形式代入进行计算即可.【详解】∵m、n是一元二次方程x2+1x﹣1=0的两实数根,∴m+n=﹣1,m•n=﹣1,∴===1.故答案为1.【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.14、【解析】
根据按一定规律排列的一列数依次为…,可得第n个数为,据此可得第100个数.【详解】由题意,数列可改写成,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为=,∴这列数中的第100个数为=;故答案为:.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.15、80°【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16、2.【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有an个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.17、1【解析】
根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案为1.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.18、ab(a+b)1.【解析】
a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.故答案为ab(a+b)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2)和;(3)【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;(3)过点作DH⊥轴于点,由::,可得::.设,可得点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到①,将代入抛物线上,可得②,联立①②解方程组,即可解答.【详解】解:设,,则是方程的两根,∴.∵已知抛物线与轴交于点.∴在△中:,在△中:,∵△为直角三角形,由题意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令则,∴,∴.①以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为.②当以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为∴符合条件的点坐标为和.过点作DH⊥轴于点,∵::,∴::.设,则点坐标为,∴.∵点在抛物线上,∴点坐标为,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在抛物线上,∴②,将②代入①得:,解得(舍去),把代入②得:.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.20、(1)详见解析;(2).【解析】
(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE为⊙O的切线;
(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.【详解】解:(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)连接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC为直径,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等边三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC与弦DC所围成的图形的面积=﹣=﹣.【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.21、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得:解得:∴此抛物线的解析式;(2)设直线AB的解析式为y=kx+b,依题意得:解得:∴直线AB的解析式为y=-x.∵点P的横坐标为m,且在抛物线上,∴点P的坐标为(m,)∵轴,且点Q有线段AB上,∴点Q的坐标为(m,-m)①当PQ=AP时,如图,∵∠APQ=90°,轴,∴解得,m=-2或m=1(舍去)②当AQ=AP时,如图,过点A作AC⊥PQ于C,∵为等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)∴点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.∴此时n的取值范围-1≤n<1.②如图,当n>1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时,解得,n=3或n=1.∵n>1.∴n=3.∴此时n的取值范围1<n≤3.综上所述,n的取值范围为-1≤n<1或1<n≤3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.22、(1);(2)【解析】
(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)==.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,解得:a=,b=1,c=﹣∴抛物线解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P点坐标为(﹣1,﹣2)∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,设E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2=﹣1+2∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)(3)∵点A(﹣3,0),点B(1,0),∴AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形∴AB∥PF,AB=PF=4∵点P坐标(﹣1,﹣2)∴点F坐标为(3,﹣2),(﹣5,﹣2)∴平行四边形的面积=4×2=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形∴AB与PF互相平分设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)∴,∴x=﹣1,y=2∴点F(﹣1,2)∴平行四边形的面积=×4×4=1综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.24、(1)25;(2)8°48′;(3)56【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:225(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:1012=5考点:频数(率)分布表;扇形统计图;列表法与树状图法.25、(1)10;(2);(3)9环【解析】
(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵阳市文化产业园租赁合同
- 2025年色浆基体树脂合作协议书
- 2024库存物资采购与销售协议样本版B版
- 2025版装配式建筑项目施工合同定额结算及预制构件应用协议3篇
- 2025高层敬木工班劳务承包合同
- 2025年罐头合作协议书
- 2025年高端煤机装备合作协议书
- 2024年社交媒体营销效果评估与优化条款3篇
- 2025建设工程合同范本建设工程施工合同范本
- 2024年科技园区安保工程:门卫室合同
- 重庆气体行业协会
- 公司走账合同范本
- 获奖一等奖QC课题PPT课件
- 企业中高层人员安全管理培训--责任、案例、管理重点
- 人教版小学三年级数学上册判断题(共3页)
- 国际项目管理手册The Project Manager’s Manual
- 小学五年级思政课教案三篇
- 高强螺栓施工记录
- 一亿以内的质数表(一)
- (完整版)倒插、翻口、评点文件
- 病理生理学缺氧
评论
0/150
提交评论