版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲一元函数的导数及其应用(一)本讲为重要知识点,也是高中的难点。题型主要围绕导数的几何意义结合函数的思想考察。基本会考察一题关于函数本身的基础题和一道导数大题,第一问对于几何意义的考察属于基础知识,必须掌握,第二问的题型相对较多,需要对于导数的应用和函数的思想相结合去理解其中的变形目的。考点一导数的概念及运算1.导数的概念一般地,函数y=f(x)在x=x0处的瞬时变化率SKIPIF1<0为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′SKIPIF1<0即f′x0=SKIPIF1<0.称函数f′(x)=SKIPIF1<0为f(x)的导函数.2.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,f(x0))处的切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).3.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=sinxf′(x)=cos_xf(x)=exf′(x)=SKIPIF1<0f(x)=lnxf′(x)=SKIPIF1<0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=cosxf′(x)=-sin_xf(x)=ax(a>0,a≠1)f′(x)=axln_af(x)=logax(a>0,a≠1)f′(x)=SKIPIF1<04.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)SKIPIF1<0(g(x)≠0).5.常用结论1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0.2.SKIPIF1<0′=-SKIPIF1<0.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点二利用导数研究函数的单调性1.函数的单调性与导数的关系函数y=f(x)在区间(a,b)内可导,(1)若f′(x)>0,则f(x)在区间(a,b)内是单调递增函数;(2)若f′(x)<0,则f(x)在区间(a,b)内是单调递减函数;(3)若恒有f′(x)=0,则f(x)在区间(a,b)内是常数函数.讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.2.常用结论汇总——规律多一点(1)在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.(2)可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.考点三利用导数解决函数的极值最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数fx在x0处有极值的必要不充分条件是f′x0=0,极值点是f′x=0的根,但f′x=0的根不都是极值点例如fx=x3,f′0=0,但x=0不是极值点.②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3常用结论1.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.2.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.3.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.考点四利用导数研究生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路是什么?答案上述解决优化问题的过程是一个典型的数学建模过程.4.对于优化问题,建立模型之后需要对模型进行最大值最小值的求解,从而转化为导数求极值最值问题.高频考点一导数的概念及其意义例1、函数SKIPIF1<0的图象如图所示,SKIPIF1<0是函数SKIPIF1<0的导函数,则下列数值排序正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】由图知:SKIPIF1<0,即SKIPIF1<0.故选:A【变式训练】1、若函数SKIPIF1<0在点(1,f(1))处的切线的斜率为1,则SKIPIF1<0的最小值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】由已知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,当且仅当SKIPIF1<0时等号成立.故选:A.高频考点二导数的运算例1、已知SKIPIF1<0,求SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】由SKIPIF1<0得SKIPIF1<0,将SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0,故选:D【变式训练】1、函数SKIPIF1<0的图像在点SKIPIF1<0处的切线方程为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【详解】对函数SKIPIF1<0求导,得SKIPIF1<0,所以SKIPIF1<0,即函数SKIPIF1<0的图像在点SKIPIF1<0处的切线斜率为2,所以函数SKIPIF1<0的图像在点SKIPIF1<0处的切线方程为SKIPIF1<0,即SKIPIF1<0.故选:A高频考点三导数在研究函数中的应用例1、已知函数SKIPIF1<0,直线SKIPIF1<0与函数SKIPIF1<0的图象有两个交点,则实数SKIPIF1<0的取值范围为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【详解】当过原点的直线SKIPIF1<0与函数SKIPIF1<0的图象相切时,设切点为SKIPIF1<0,由SKIPIF1<0,可得过点SKIPIF1<0的切线方程为SKIPIF1<0,代入点SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0,此时切线的斜率为SKIPIF1<0,由函数SKIPIF1<0的图象可知,若直线SKIPIF1<0与函数SKIPIF1<0的图象有两个交点,直线的斜率SKIPIF1<0的取值范围为SKIPIF1<0.故答案选:D【变式训练】1、已知函数SKIPIF1<0,若SKIPIF1<0是函数SKIPIF1<0的唯一极值点,则实数SKIPIF1<0的取值集合是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【详解】函数SKIPIF1<0定义域为SKIPIF1<0,SKIPIF1<0,由题意可得,SKIPIF1<0是方程SKIPIF1<0唯一变号的根,令SKIPIF1<0,则SKIPIF1<0在SKIPIF1<0上没有变号零点,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市绿化草坪施工养护合同
- 2024年度常州租房合同的房屋维修义务规定
- 倾卸手推车市场发展现状调查及供需格局分析预测报告
- 2024年度仓库租赁与保管服务合同
- 2024年度场地租赁合同中的保密条款解读
- 2024年度安全技术交流与合作合同
- 2024年度医疗服务合同:医疗机构与患者之间就医疗服务达成的合同
- 2024年度区块链技术应用与合作开发合同
- 自拍杆手持单脚架市场发展现状调查及供需格局分析预测报告
- 2024年度围挡拆除合同
- 新兴材料对造纸业的影响
- 高风险诊疗技术项目总结报告
- 2024年05月泰山职业技术学院引进博士研究生20人笔试历年高频考点(难、易错点)附带答案详解
- 2024年高考数学 直线与圆(解析版)
- 临时入场人员安全告知书
- 新融合大学英语(II)智慧树知到期末考试答案章节答案2024年江西理工大学
- 抖音直播知识培训考试题库(含答案)
- 年产2完整版本.5亿粒胶囊生产车间工艺的设计说明
- 2024年广东省广州市荔湾区中考一模英语试题(无答案)
- MOOC 数学文化十讲-南开大学 中国大学慕课答案
- (高清版)WST 347-2024 血细胞分析校准指南
评论
0/150
提交评论