2023-2024学年高一数学2019试题11.1余弦定理(第1课时)_第1页
2023-2024学年高一数学2019试题11.1余弦定理(第1课时)_第2页
2023-2024学年高一数学2019试题11.1余弦定理(第1课时)_第3页
2023-2024学年高一数学2019试题11.1余弦定理(第1课时)_第4页
2023-2024学年高一数学2019试题11.1余弦定理(第1课时)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.1余弦定理(第1课时)一、单选题1.在△ABC中,已知b2=ac且c=2a,则cosB等于(

)A. B. C. D.【答案】B【解析】【分析】利用余弦定理求得.【详解】,则,由余弦定理得.故选:B2.在中,,,,则(

)A. B. C. D.【答案】C【解析】【分析】利用余弦定理求解即可.【详解】在中,由余弦定理可得,所以所以,故选:.3.在中,若,,,则AB的长度为(

)A.2 B.4C. D.【答案】D【解析】【分析】利用余弦定理计算可得;【详解】解:在中,,,由余弦定理可得,即,解得或(舍去)故选:D4.的内角A,B,C的对边分别为a,b,c,已知,,,则b=(

)A. B. C.3 D.或3【答案】D【解析】【分析】根据可得,再利用余弦定理求解即可【详解】由题,因为,故为锐角,故,又由余弦定理可得,故,化简得,故或3故选:D【点睛】本题主要考查了解三角形的运用,需要根据题意确定用哪个角的余弦定理,同时要注意边角关系以及大小的判断,属于基础题5.若的三条边长分别为,则的最大角与最小角之和为(

)A. B. C. D.【答案】B【解析】【分析】设,,,则,由余弦定理求角,再结合三角形内角和求,即得的最大角与最小角之和.【详解】不妨设,,,根据大边对大角可知:,由余弦定理可得:,又因为,所以,所以,所以的最大角与最小角之和为,故选:B.6.已知在中,角A,,的对边分别为,,,若,且,则(

)A. B. C. D.【答案】A【解析】【分析】根据余弦定理及题干条件,可得,,根据余弦定理,可求得的值,逐一分析各个选项,即可得答案.【详解】由题意得,所以,又,所以,所以,,所以,因为,,所以,故A正确,B、D错误;,所以,所以,故C错误.故选:A二、多选题7.在中,角的对边分别为,若,则角可为(

)A. B. C. D.【答案】BC【解析】【分析】利用余弦定理化简可得;分别验证各个选项中的的取值,根据可确定正确选项.【详解】由余弦定理得:,又,,整理可得:;对于A,,则,A错误;对于B,,则,B正确;对于C,,则,C正确;对于D,,则,D错误.故选:BC.8.的内角A,B,C所对边分别为a,b,c,对于,有如下命题,其中正确的有(

)A.sin(B+C)=sinAB.cos(B+C)=cosAC.若,则为直角三角形D.若,则为锐角三角形【答案】AC【解析】【分析】利用三角形内角和定理与诱导公式判断A,B;利用余弦定理计算判断C,D作答.【详解】依题意,中,,,A正确;,B不正确;因,则由余弦定理得:,而,即有,为直角三角形,C正确;因,则,而,即有,为钝角三角形,D不正确.故选:AC三、填空题9.如图,已知两座灯塔、与的距离都是,灯塔在的北偏东,灯塔在的南偏东,则灯塔与灯塔的距离为______km.【答案】【解析】【分析】在中,利用余弦定理即可求解.【详解】由题意可得:,,在中,由余弦定理可得:,所以,即灯塔与灯塔的距离为,故答案为:.10.某船在岸边A处向正东方向航行x海里后到达B处,然后朝南偏西60°方向航行3海里到达C处,若A处与C处的距离为nmile,则x的值为___________.【答案】或2【解析】【分析】由题意得,在由A、B、C三点所构成的三角形ABC中,由余弦定理可得x的值.【详解】由题意得,在中,由余弦定理,得AC2=AB2+BC22AB·BC·cosB,即x2+92·x·3cos30°=,即x23x+6=0,得x=2或x=.故答案为:或2.11.在锐三角形ABC中,角A、B、C的对边分别为a、b、c,若a=,c=2,cosA=,则b=___________.【答案】3【解析】【分析】根据余弦定理计算即可【详解】由余弦定理可得,,即,,解得故答案为:312.若的三边满足,则最小的内角为_____.【答案】【解析】【分析】根据已知设,,,然后将用表示,再确定最小内角,再利用余弦定理求解即可.【详解】因为,所以设,,,所以,,,又,所以为最小内角,由余弦定理,得,所以,即最小的内角为.故答案为:四、解答题13.在中,已知,,,求平行四边形两条对角线的长.【答案】cm,cm【解析】【分析】由条件利用平行四边形的性质可得cm,,中,由余弦定理求得对角线的值;中,由余弦定理求得对角线的值.【详解】平行四边形,已知,,,则有cm,,中,由余弦定理可得cm,中,由余弦定理可得cm14.在中,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论