版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年黑龙江齐齐哈尔市泰来县市级名校十校联考最后数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=12.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=63.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.184.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠05.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.6.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是().A. B.C. D.7.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.以上答案都不对8.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0 B.0.8 C.2.5 D.3.49.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为()A.a≥ B.a> C.a≤ D.a>10.下列图形中,主视图为①的是()A. B. C. D.11.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A. B. C. D.12.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.14.计算:2(a-b)+3b=___________.15.计算的结果等于_____.16.若a,b互为相反数,则a2﹣b2=_____.17.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.18.对角线互相平分且相等的四边形是()A.菱形 B.矩形 C.正方形 D.等腰梯形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.20.(6分)试探究:小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE=;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.拓展延伸:小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:(1)求证:△ACF∽△FCE;(2)求∠A的度数;(3)求cos∠A的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.21.(6分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.22.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数23.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.24.(10分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.25.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.26.(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.27.(12分)如图,已知一次函数y=kx+b的图象与反比例函数y=8(1)求一次函数的解析式;(2)求ΔAOB的面积。
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.2、D【解析】
本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.3、B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.4、C【解析】
分式分母不为0,所以,解得.故选:C.5、D【解析】
过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.6、B【解析】
把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【详解】解:∵y=x2+2x+3=(x+1)2+2,
∴原抛物线的顶点坐标为(-1,2),
令x=0,则y=3,
∴抛物线与y轴的交点坐标为(0,3),
∵抛物线绕与y轴的交点旋转180°,
∴所得抛物线的顶点坐标为(1,4),
∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
故选:B.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.7、B【解析】
首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.【详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.8、D【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CH⊥BD于点H,∵六边形ABCDE是正六边形,∴∠BCD=120º,∴∠CBH=30º,∴BH=cos30º·BC=,∴BD=.∵DK=,∴BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,∴0≤d≤,即0≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.9、B【解析】
方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.【详解】①+②得:解得:故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.11、C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C.12、C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】
把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.14、2a+b.【解析】
先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.15、【解析】分析:直接利用二次根式的性质进行化简即可.详解:==.故答案为.点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.16、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.17、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD=∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.18、B【解析】
根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∴对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2)详见解析.【解析】
(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.【详解】解:(1)在△ABC和△ADE中∴△ABC≌△ADE(SSS);(2)由△ABC≌△ADE,则∠D=∠B,∠DAE=∠BAC.∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.设AB和DE交于点O,∵∠DOA=BOE,∠D=∠B,∴∠DEB=∠DAB.∴∠EAC=∠DEB.【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.20、(1)小张的发现正确;(2)详见解析;(3)∠A=36°;(4)【解析】
尝试探究:根据勾股定理计算即可;拓展延伸:(1)由AE2=AC•EC,推出,又AE=FC,推出,即可解问题;(2)利用相似三角形的性质即可解决问题;(3)如图,过点F作FM⊥AC交AC于点M,根据cos∠A=,求出AM、AF即可;应用迁移:利用(3)中结论即可解决问题;【详解】解:尝试探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC•EC=2×[2﹣()]=6﹣,∴AE2=AC•EC,∴小张的发现正确;拓展延伸:(1)∵AE2=AC•EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如图,过点F作FM⊥AC交AC于点M,由尝试探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;应用迁移:∵正十边形的中心角等于=36°,且是半径为2的圆内接正十边形,∴如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,设AF=AC=2,FC=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半径为2的圆内接正十边形的边长为.【点睛】本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.21、(1)见解析(2)25【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53连接EF交于点O,∴AC⊥EF于点O,点O是AC中点.∴OE=12∴EF=53∴菱形AECF的面积是12AC·EF=25考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.22、(1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万【解析】试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;(3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.故答案为1500;(2)1500-450-420-330=300人.补全的条形统计图如图:(3)18-23岁这一组所对应的圆心角的度数为360×=108°.故答案为108°;(4)(300+450)÷1500=50%,.考点:条形统计图;扇形统计图.23、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.24、(1)y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).【解析】
(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2-x;(2)如图,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴当OP=OC或OP′=2OC时,△POC与△AOE相似,∴OP=,OP′=,∴点P坐标为(0,)或(0,).(3)如图,取Q(,0).连接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是线段AQ的长,最小值为.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.25、(1)①证明见解析;②25;(2)为或50+1.【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵点F是AB的中点,∴AF=AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创设乐园培养幼儿园小班的音乐艺术天赋计划
- 兰州大学《管理会计实务与案例》2023-2024学年第一学期期末试卷
- 兰州博文科技学院《服装数字化技术CAD》2023-2024学年第一学期期末试卷
- 年度绩效评估的实施步骤计划
- 项目公司合作协议三篇
- 定期参与行业交流扩大视野计划
- 积极面对工作中的失败与挑战计划
- 拉萨师范高等专科学校《国家公务员制度》2023-2024学年第一学期期末试卷
- 昆山登云科技职业学院《软件质量保证》2023-2024学年第一学期期末试卷
- 昆明医科大学海源学院《军事理论教育》2023-2024学年第一学期期末试卷
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- 2023-2024年行政执法综合知识考试题库(附含答案)
- 规划设计方案审批全流程
- 未成年被害人“一站式办案”工作室建设与运行规范
- 《中外历史纲要(上)》期末专题复习提纲
- 2024年考研政治试题及详细解析
- 征兵工作试题
- 情绪调试-再见emo你好+Emotion+高一下学期心理健康教育课(通用版)
- TCALC 003-2023 手术室患者人文关怀管理规范
- 北京市西城区2023-2024学年七年级上学期期末地理试卷
- 建设工程安全风险管理
评论
0/150
提交评论