2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷含解析_第1页
2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷含解析_第2页
2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷含解析_第3页
2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷含解析_第4页
2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学猜题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()A.﹣1 B.±2 C.2 D.﹣22.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A. B.2 C. D.33.要使式子有意义,的取值范围是()A. B.且 C..或 D.且4.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)5.在代数式中,m的取值范围是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠06.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.7.若,则x-y的正确结果是()A.-1 B.1 C.-5 D.58.下列二次根式中,为最简二次根式的是()A. B. C. D.9.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°10.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A.10,1 B.7,8 C.1,6.1 D.1,611.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. B. C. D.12.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:×(﹣2)=___________.14.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).15.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.16.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)17.关于的一元二次方程有两个相等的实数根,则________.18.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于12②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.20.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.21.(6分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.(1)求k的值.(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围.22.(8分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.23.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.24.(10分)计算:()﹣2﹣+(﹣2)0+|2﹣|25.(10分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;26.(12分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<1001027.(12分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,)

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,

∵x1+(k1-4)x+k-1=0的两实数根互为相反数,

∴x1+x1,=-(k1-4)=0,解得k=±1,

当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;

当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;

∴k=-1.

故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−,x1x1=,反过来也成立.2、A【解析】

设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.【详解】设AC=a,则BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.3、D【解析】

根据二次根式和分式有意义的条件计算即可.【详解】解:∵有意义,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.4、A【解析】

根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.5、D【解析】

根据二次根式有意义的条件即可求出答案.【详解】由题意可知:解得:m≤3且m≠0故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.6、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程7、A【解析】由题意,得

x-2=0,1-y=0,

解得x=2,y=1.

x-y=2-1=-1,

故选:A.8、B【解析】

最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【详解】A.=3,不是最简二次根式;B.,最简二次根式;C.=,不是最简二次根式;D.=,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.9、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则2r·πr180考点:圆锥的计算.10、D【解析】

根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.【详解】解:这11个数据的中位数是第8个数据,且中位数为1,,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元.故选:.【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.11、C【解析】

根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.12、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、-1【解析】

根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.【详解】故答案为【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.14、>【解析】

分别根据方差公式计算出甲、乙两人的方差,再比较大小.【详解】∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案为:>.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15、x(x﹣2)(x﹣1)2【解析】

先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.【详解】解:(x2−2x)2−(2x−x2)=(x2−2x)2+(x2−2x)=(x2−2x)(x2−2x+1)=x(x−2)(x−1)2故答案为x(x﹣2)(x﹣1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.16、2.5×1【解析】

先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案为2.5×1.【点睛】本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.17、-1.【解析】

根据根的判别式计算即可.【详解】解:依题意得:∵关于的一元二次方程有两个相等的实数根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.18、17℃.【解析】

根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.【详解】解:返回舱的最高温度为:21+4=25℃;返回舱的最低温度为:21-4=17℃;故答案为:17℃.【点睛】本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)详见解析;(2)1.【解析】

(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.

(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:∵分别以A、C为圆心,以大于12∴直线DE是线段AC的垂直平分线,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四边形ADCE是平行四边形,又∵AC⊥DE,∴四边形ADCE是菱形;(2)解:当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周长为18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.20、(1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】

(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为(7+8)=7.5;平均数为(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度数,×360°=72°,7℃的度数,×360°=108°,8℃的度数,×360°=72°,10℃的度数,×360°=72°,11℃的度数,×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.21、(1)12;(2)点A不与点B重合;(3)【解析】

(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b=,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.【详解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=,显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=,这时仍然是抛物线右半支经过点C,∴b的取值范围为≤b≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.22、证明见解析.【解析】

利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.23、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析【解析】

(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.【详解】(1)由抛物线的对称轴是,可设解析式为.把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为(2)∵点在抛物线上,位于第四象限,且坐标适合,∴y<0,即-y>0,-y表示点E到OA的距离.∵OA是的对角线,∴.因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的取值范围是1<<1.(3)①根据题意,当S=24时,即.化简,得解之,得故所求的点E有两个,分别为E1(3,-4),E2(4,-4).点E1(3,-4)满足OE=AE,所以是菱形;点E2(4,-4)不满足OE=AE,所以不是菱形.②当OA⊥EF,且OA=EF时,是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使为正方形.24、2【解析】

直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论