四川省眉山一中2022年高三(最后冲刺)数学试卷含解析_第1页
四川省眉山一中2022年高三(最后冲刺)数学试卷含解析_第2页
四川省眉山一中2022年高三(最后冲刺)数学试卷含解析_第3页
四川省眉山一中2022年高三(最后冲刺)数学试卷含解析_第4页
四川省眉山一中2022年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A. B. C. D.2.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.3.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有4.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为()A. B. C. D.5.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.6.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.7.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.8.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交9.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④10.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.1911.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A. B. C. D.112.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,若,则______.14.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.15.(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于____________.16.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.18.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.19.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.20.(12分)如图,在正三棱柱中,,,分别为,的中点.(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值.21.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.22.(10分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,,即,由,所以有,化简得,所以离心率.故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.2.A【解析】

根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.3.C【解析】

根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.4.D【解析】

三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.5.D【解析】

由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D【点睛】本题考查几何概型的面积公式的应用,属于基础题.6.A【解析】

根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功7.D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.8.D【解析】

通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9.D【解析】

根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.10.B【解析】

由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.11.C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C.考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.12.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13.-1【解析】

由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【详解】由已知,∵,∴,.故答案为:-1.【点睛】本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.14.(1),;(2),.【解析】

(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.15.【解析】

方法一:依题意,知直线的方程为,代入圆的方程化简得,解得或,从而得或,则.方法二:依题意,知直线的方程为,代入圆的方程化简得,设,则,故.方法三:将圆的方程配方得,其半径,圆心到直线的距离,则.16.【解析】

把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)或.【解析】

(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.18.(1);(2)证明详见解析,;(3).【解析】

(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程,进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存在,设直线的方程为,联立,消去得到,设点,则.所以,所以的方程为,令得,将,代入上式并整理,,整理得,所以,直线与轴相交于定点.当过点的直线的斜率不存在时,直线的方程为,此时,当过点的直线斜率存在时,设直线的方程为,且在椭圆上,联立方程组,消去,整理得,则.所以所以,所以,由得,综上可得,的取值范围是.【点睛】本题主要考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.19.(1)(2)见证明【解析】

(1)利用零点分段法讨论去掉绝对值求解;(2)利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,,,所以;当时,,.所以不等式的解集是.(2)证明:由,,得,,,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.20.(1)证明见详解;(2).【解析】

(1)取中点为,通过证明//,进而证明线面平行;(2)取中点为,以为坐标原点建立直角坐标系,求得两个平面的法向量,用向量法解得二面角的大小.【详解】(1)证明:取的中点,连结,,如下图所示:在中,因为为的中点,,且,又为的中点,,,且,,且,四边形为平行四边形,又平面,平面,平面,即证.(2)取中点,连结,,则,平面,以为原点,分别以,,为,,轴,建立空间直角坐标系,如下图所示:则,,,,,,,,设平面的一个法向量,则,则,令.则,同理得平面的一个法向量为,则,故平面与平面所成二面角(锐角)的余弦值为.【点睛】本题考查由线线平行推证线面平行,以及利用向量法求解二面角的大小,属综合中档题.21.(1);(2).【解析】

(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论